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Abstract

The purpose or tnis study was to develop a computer

program that can assess the impact of smell design perturba-

tions on the performance of a planar array antenna of di-

poles. The antenna designer can compare an array's theore-

tical performance standards with those of the perturbed

array.

In the course of this study, an expression for the

expected or average radiation pattern for the perturbed

planar array was developed and used in the pr-gram. Trans-

lational errors in the positions of the elements, errors in

the element's drive amplitude and phase, non-identical

element patterns, and missi~ig elements were accounted for in

the expected radiation pattern.

The designer specifies the array desiqn parameters and

the tolerance data, then the program calculates the radia-

tion pattern data, half-power beamwidths, and directivities

for specified scan angles and frequency bandwidth for the

design and expected arrays. The radiation pattern data can

be plotted allowing side lobe comparison between the ex-

pected and design arrays.

The study confirmed five trends noted in earlier stu-

dies: (1) The rise in side lobe level dup to random errors,

for a given set of tolerances and number of elements, in-

creased as the side lobe level was further suppressed. (2)

For a given set of tolerances, pattern deterioration was

xiv



found to decrease as the array was enlarged. (3) For a

given set of tolerances, pattern deterioration was less for

a planar array of size L2 than it was for a linear array of

lengtit L. (4) The side lobe level increase due to random

errors did not depend on the scan angle. (5) Although not

shown conclusively, but, in a qualitative sense, transla-

tional errors were found to cause the dominant effect with

high element reliability.

The antenna designer can use the program tn Asse s the

effects of certain tolerances in designing the array. The

designer can use the program as a tool for establishing a

bound on the tolerances to achieve a certain side lobe

level. Or, given the tolerances, the designer can adjust

the size of the array until the desired side lobe level is

achieved.
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Preface

The purpose of this study was to develop a computer

program that can assess the impact of small design perturba-

tions on the performance of a planar array antenna. The

antenna designer can compare theoretical design calculations

for an array with those of the perturbed array.

Considerable work was spent validating each routine to

ensure theoretical and expected results agreed with known

examples found in the literature. The program calculates

radiation pattern data, half-power beamwidths, and direc-

tivities for specified scan angles and frequency bandwidth

for both the design array and expected array. The radiation

pattern data can be plotted to allow a side lobe comparison

between the design and expected arrays.-. This work should be

continued, as additional routines could further enhance the

effectiveness of this program.

In developing the theory and writing the program and

thesis, I had a great deal of assistance from several indi-

viduals. I gratefully thank my faculty advisor Major H. H.

Barksdale for his patience and invaluable suggestions that

ultimately lead to the conclusion of this project. I also

thank my committee members, Capt. G. T. Warhola and Dr. V.

P. Pyati for their contributions to this effort. I am also

indebted to the AFIT librarians for their professional

assistance in locating several key documents that enabied me 0

to undertake this project. Finally, and without a doubt,
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PLANAR ARRAY ANTENNA DESIGN ANALYSIS

Volume I

I. Introduction

Background

One of the fundamental principles of array antenna

theory is that the radiation pattern is determined by the

amplitude and phase of the excitation currents over the

array, interelement spacing, frequency of operation, and the

choice of radiating elements. The antenna designer can,

theoretically, specify the form of the currents across the

array, the interelement spacings, and elements and expect

the resulting radiation pattern to be as predicted. In

practice, however, there will be unavoidable errors in the

amplitude and phase of currents, the interelement spacing,

and the individual element's radiation pattern so that the

actual radiation pattern will differ from the theoretical.

The agreement between the two depends on how well the desir-

ed distribution of the currents across the array, the inter-

element spacing, and the element's radiation pattern can be

achieved.

Errors in an array antenna can be divided into two

categories depending on whether they are predictable (sys-

tematic) or random (21:364; 22:227; 25:13). Chief among

predictable errors is a phenomena known as mutual coupling.

The signal emitted from any one element will induce a sympa-

1



thetic excitation in every cther element, thus, altering the

array's radiation pattern (25:13). Another example is the

finite quantization of the phase produced by a digital phase

shifter (22:227). The effects of such errors are predic-

table and the resulting radiation pattern can be computed by

classical methods from a knowledge of the array design.

Random errors are caused by the accidental deviation of

the array antenna parameters from their design value. An

array antenna radiation pattern might differ from the desir-

ed pattern because of, (1) errors in the amplitude of the

currents at each element, (2) errors in the phase of the

current, (3) missing elements (due to catastrophic failure),

(4) rotation of the radiating elements, (5) translational

errors in the element location, and (6) errors in the radia-

tion pattern of each element (22:228). Although they are

small, they are ever-present and can limit the minimum side

lobe level that can be achieved just as random noise limits

the sensitivity of a radio receiver. In most radar systems,

low side lobe levels are very important in minimizing the

false target indications and jamming through the side lobes

(4:21). Random errors can also cause a reduction in power

gain, an error in the direction of the main beam, lower

directivity, and deviations in other performance standards.

If errors in an existing antenna can be measured, the

pattern can be calculated in the classical manner. However,

one cannot predict the exact nature of random errors that

2



might be encountered in some particular antenna from a

knowledge of its design. The actual existence of an antenna

is required. It is possible, however, to predict in statis-

tical terms the pattern behavior of a collection of anten-

nas. The average value of the pattern and the standard

deviation about the average are used to describe the antenna

performance. 'he statistical description of random errors

cannot be applied to any particular antenna but applies to

the collection of similar antennas whose errors are describ-

ed by the same statistical parameters (22:228).

In view of the preceding, the TAC/INTEL Division,

Special Projects Systems Program Office, Deputy for Recon-

naissance and Electronic Warfare Systems, Aeronautical

Systems Division (ASD/RWZI) is currently sponsoring work in

developing a computer program to predict an array's perfor-

mance based on its design and a set of design tolerances.

Problem

The basic problem facing ASD/RWZI is evaluating the

impact of systematic and random errors on the performance

standards of a given planar array antenna design. This

study will investigate the effects of random fluctuations on

the performance characteristics of a planar array of dipole

antennas and develop a FORTRAN computer program to predict

the array's performance based on these random errors. The

effects of random errors on an array's radiation pattern is

well documented in the literature, however, a specific

3



program incorporating the effects of random errors on a

particular array suitable for use in a system program office

has not been developed. Therefore, this study should have

direct application in a system program office to predict the

effects of random errors on an array's performance.

Scope

This project will consider the effects of random fluc-

tuations on the performance standards of planar arrays of

dipole antennas. Predictable or systematic errors will not

be considered. Rectangular arrays will be considered along

with the more common forms of amplitude distributions across

the array, i.e., uniform, binomial, Dolph-Chebyshev, and

Taylor n-parameter element weights. The array's perfor-

mance standards include side lobe level, power gain, direc-

tivity, half-power beamwidth, bandwidth, and pointing

angles.

Assumptions/Limitations

In order to make the problem of determining the effects

of random errors on planar array performance tractable,

several assumptions must be made.

1. The planar array will lie in the x-y plane.

2. All elements in a particular planar array will be

the same.

3. The excitation coefficients and the positions of

the elements actually have some random scatter about their

4



mean or expected values. These expected values may be

regarded as averages, taken over a large number of different

arrays, or they may be thought of as long-term time averages

for a single array whose parameters very with time in a

random fashion (11:119; 14:640-644; 21:365; 22:229).

4. Root-mean-square errors in element position are all

small, compared to the wavelength, independent random varia-

bles which are normally distributed (Gaussian distribution)

with zero means and respective variances y2 (1:268;3:235-

236; 11:116; 16:268; 20:175).

5. The mean-square phase and amplitude errors in the

drive current at any element and the mean-square error in

the element patterns are all taken to be independent of the

errors in any other element, small, and normally distribu-

ted. The mean-square phase errors are small compared to pi

(r) and the mean-square arplitude and element pattern errors

are small compared to unity (1:267;16:269;22:229).

6. Antenna efficiency remains the same between the

design antenna and the antenna with small perturbations, so

that, from the relations:

Gdes = e Dde s  (1.1)

and

Gave =eDave (1.2)

we can use:

Gave/Gdes = Dave/Ddes (1.3)

5



to determine the change in power gain once Dave and Ddes are

calculated. Gdes and Ddes are the design power gain and

directivity, respectively, and Gave and Dave are the power

gain and directivity, respectively, determined from the

expected or average radiation pattern due to errors in the

design of the array.

Review of the Literature

Many authors have studied the effects of random errors

on the radiation pattern of array antennas and developed

expressions relating these errors to different performance

characteristics of the antenna. The first comprehensive

study was conducted by Ruze (21:364-380), who considered an

equispaced linear array containing random errors in the

exciting currents, and deduced the influence they would have

on directivity and side lobe level. He used the restric-

tions that the magnitudes of all error currents be the same

and that all phases of an error current be equally probable.

He concluded that for a given current precision, low side

lobes are more readily obtained with large antennas. Ash-

mead (2:81-92) extended Ruze's work by assuming that each

error current was the same fraction of the corresponding

unperturbed current, all phases still being equally proba-

ble. He presented a method for finding the mean side lobe

suppression which may be obtained for any Chebyshev distri-

bution. He showed that an over-design can actually result

in loss of suppression of the side lobes as well as loss in

6



gain. Bailin and Ehrlich (3:235-241) took the problem one

step further by considering the physical errors, namely

inaccuracies in manufacturing, which cause random errors in

the exciting currents. Applying statistical methods to the

standard expression for the far field of a linear array,

they were able to calculate the probability that a side lobe

level will exceed a certain comparison value taken to be the

mean plus the standard deviation of the magnitude of the

field. Their results indicate there are two courses of

action available to the designer in achieving the desired

side lobe suppression. The first is to require very small

tolerances in manufacture, however, this would be cost

prohibitive, especially in making large arrays. The second

course is to over-design the array by designing for an N-db

side lobe level if an M-db level is required where N > M.

The amount of over-design can be governed by the results

presented in their paper, however, if the length of the

array is fixed, the over-design will result in reduced

aperture efficiency. Their work was furthered by O'Neill

and Bailin (18:93-102) in a paper which establishes a set of

standards based on the theory and the results of many calcu-

lations.

Gilbert and Morgan (14:637-663) studied the optimum

design of discrete, directive antenna arrays of arbitrary

geometrical configuration in space. They allowed the excita-

tions and spatial positions of the elements comprising the

7



array to vary in a random fashion about their nominal val-

ues. They concluded that under certain conditions the

expected power pattern of an array turns out to be the power

pattern of the nominal array, plus a background power level

which has the same dependence in direction as the pattern of

a single element.

Cheng (7:145-147) analyzed small phase errors and

derived several expressions relating phase errors to the

maximum possible loss in antenna gain and half 3-db beam-

width when the peak value of the phase deviation is known.

His expressions are derived for both rectangular and cir-

cular apertures.

Elliott (11:114-120) extended the problem to consider

the effect of random constructional errors on the pattern of

a two dimensional dipole antenna array. He showed that the

most serious tolerance appears to lie in the translational

positions of the dipoles and their angular (rotational)

positions are relatively unimportant. Of secondary impor-

tance are the errors in the radiating currents. He derived

an expression which relates side lobe level to these errors

with representative calculations displayed in his examples.

Several noteworthy results were obtained from his analysis:

(1) the rise in side lobe level due to random errors is

independent of scan angle, (2) the rise in side lobe level

is less the larger the antenna, for a given tolerance and a

given side lobe level, and (3) the rise in side lobe level
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is more the lower the design side lobe level, for a given

antenna size and a given tolerance.

Rondinelli (20:174-189) advanced the study for planar

arrays by deducing the effects of randcm errors on beam

pointing accuracy and on the average rise in side lobe level

within a specified cone around the main beam. The complex-

ity of the beam pointing problem is such that only a res-

tricted solution was obtained. However, this complexity is

greatly relieved when one's attention is confined to linear

arrays, and Leichter (16:268-275) provided a solution for

this case.

Allen (1:259-319) was concerned with several eytensions

of the theory of random error effects and a critical "second

look" at some earlier results. First, Allen examined the

potential sources of errors including the previously neglec-

ted effects of non-identical element factors and the possi-

bility of catastrophic failures. He shows that all error

effects can be characterized by these parameters: (a) The

expected fraction of operating elements, (b) the total

amplitude variance, and (c) the characteristic function of

the element phase errors. Simple relationships are pointed

out between the last two parameters and the corresponding

statistics of the various errors possible in each element,

under the assumption of independence of the various contri-

buting sources.
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Allen's derivation of the probability density function

of the far-field followed, in which some of the restrictive

assumptions of previous derivations are omitted. The deri-

vation given is valid for any assumed distributions of the

various error sources, with only the restrictions that the

errors are essentially independent from element to element,

and that the corresponding errors in different elements are

samples of the same random variable. He shows that the

pattern statistics may be markedly different in the prin-

ciple lobe regions and in the side lobe regions and that t;;o

distinct probability density functions are generally neces-

sary to satisfactorily describe the field everywhere.

Allen concludes with a brief review of the effects of

random errors on side lobe levels, with emphasis on the

error effects in regions where errors predominate the design

pattern. Also, the expected reduction in the array's direc-

tivity due to small errors is derived.

Skolnik (22:227-233) discussed the effect of random

errors on a planar array of isotropic elements. He included

errors in the amplitude of the currents at each element,

errors in the phase of the current, and the effect of miss-

ing elements (due to catastrophic failure). He derived an

average power pattern that is the superposition of t,,o

terms. One term is the no-error power pattern multiplied by

the square of the fraction of elements remaining and multi-

plied by a factor proportional to the phase err r. The

10



second term depends on both the amplitude and the phase

errors as well as on the fraction of elements remaining. He

gives an expression for the reduction in gain based on the

average power pattern.

Malor Definitions

The array's performance standards are well documented

in the current literature (4,23). The purpose of this

section is to review the definitions that will be used to

calculate an array's performance standards with and without

random errors considered.

Side Lobe Level (SLL) is a measure of how well the

power is concentrated into the main lobe; it is the ratio of

the power pattern value of the side lobe peak to the pattern

value of the main lobe (23:29-30):

SLLdB = 20 logIF(SLL)/F(MAX) (1.4)

where AF(0,0) is the normalized field pattern, IF(MAX) I is

the maximum value cf the pattern magnitude at the angles 6,0

where the maximum occurs; and IF(SLL) I is the pattern value

of the maximum of the highest side lobe magnitude at its

corresponding angles 0,0. For a normalized field pattern

IF(MAX)I = 1.

Directive Gain is a measure of how well an antenna

radiates its power in a given direction and is defined as

the ratio of the radiation intensity H(O,p) in a certain

direction to the average radiation intensity Have (23:34):
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D(0,0) = H(6,&i )/Have (1.5)

where Have is defined as:

Have = ffaH(0,0)dn (1.6)

and

dn = sinod~do (1.7)

Equation (1.5) can be manipulated to yield an expression in

terms of the normalized field pattern F(0,0) (23:35):

D(O,0) = 4ir1F(9,c ) 2/ (1.8)

where OA is the antenna beam solid angle defined by:

n= ffn F(8,0)j1dfn (1.9)

Directivity (D.) is defined as the maximum value of direc-

tive gain or (23:36):

Do = 41r/n A  (1.10)

Power gain G(0,0) of antenna in a given direction is

defined as (4:43); "41r times the ratio of the radiation

intensity in that direction to the net power accepted by the

antenna from a connected transmitter." In general:

G(0,0) = 47r H(B,c0)/Pin (1.11)

where

H(0,0) = radiation intensity = IF(8,P)1 2  (1.12)
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and
Pin = total input power (1.13)

However, for the purposes of this study, we will calculate

the change in power gain based on Assumption number six and

equation (1.3).

The half-power beamwidth (HPBW) is the angular separa-

tion of the points in the 8. and -h directions where the

magnitude of the main beam of the power pattern equals one-

half as illustrated in Figure 1. Hence, we have:

eh = 0HPteft - OHPrightl (1. 14)

and

th = I 'HPteft - *HPrightI (1.15)

where OHPteft and HPright are the points to the "left" and

"right" of the main beam where:

IF(,0)(1.16)

Similarly for *HPLeft and iHPright"

The bandwidth of an antenna is defined as (4:47) "the

range of frequencies within which the performance of the

antenna, with respect to some characteristic conforms to a

specified standard." The bandwidth is calculated using:

(upper frequency - lower frequency) x 100 (1.17)
center frequency
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z 
e

0 I

Figure 1. Half-power beamwidths for a conical beam oriented
toward 0 =0, 0 = 0"

Pointing angles are defined as the direction of maximum

radiation. Much like bandwidth, as the pointing angles are

varied from the design pointing angles, beamwidth, directi-

vity, and other performance standards will change.

Approach

The main objective of this thesis is to apply the

results from earlier studies on the effects of random errors

on an array's radiation pattern and write a FORTRAN program

incorporating these results to determine an array's perfor-
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mance with errors. However, no one author has incorporated

the effects of all random errors, identified in the Back-

ground section, into one expression.

Three expressions relating various random errors to an

array's radiation pattern emerged from the literature re-

view. Elliott (11:116) derived an expression for the aver-

a-ge radiati,,i patteLri bao.cd .n tranzationa] and rotational

errors in the positions of dipoles and random errors in the

exciting current of the dipoles. An expression derived by

Skolnik (22:231), took into account errors in the amplitude

and phase of the drive current at each isotropic element and

missing elements (due to catastrophic failure). Finally,

Allen (1:288) derived an expression for the average radia-

tion pattern by considering non-identical element factors,

translational errors in the positions of the elements,

errors in the amplitude and phase of the drive currents of

each element, and missing elements. Allen's expression was

derived for a linear array, but can be extended to the

planar array case quite easily. Allen's expression is the

most comprehensive in terms of including all of the various

random errors, except rotational errors which Elliott con-

cluded are relatively unimportant. The expression for the

average radiation pattern derived in this paper will include

all the errors considered by Allen and will follow Skolnik's

methodology in deriving the expression for a planar array.
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Once the average array pattern is computed for a cer-

tain pointing angle and element excitations, it is a

straightforward process to determine the random error ef-

fects on the array's various performance standards using

equations (1.3) through (1.17).

The FORTRAN program will be written to allow the user

to specify certain tolerances, excitation schemes, dimen-

sions of the array, phase tapers, operating wavelength or

frequency, and the bandwidth of operation. The user will

input the antenna's tolerances found in the antenna's design

specification or provided by the antenna design manufac-

turer. The program will then compute the array's design and

expected performance standards using the various equations

defined earlier.

The program will be tested against several of the

authors' (1,2,3,7,11,18,20) findings in the literature.

First, though, a rigorous evaluation of excitation coeffi-

cient routines will be conducted to ensure the program

produces the proper amplitudes for the elements. Thi3 is

easily done by plotting the data generated by the program

and verifying that the pattern produced from the data match-

es what was called for in terms of side lobe level or ex-

pected pattern. Then, to ensure the program performs prop-

erly, the tolerances used by these authors in their tests

will be used in this program to re-affirm their results and

qualitative assessments.
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Chapter II develops the theoretical radiation pattern

for a planar array antenna of dipoles beginning with Max-

well's equations. In Chapter III, we will derive a statis-

tical radiation pattern based on small, independent pertur-

bations in the design, allowing us to calculate the devia-

tions in performance standards. Chapter IV outlines the

operation of the FORTRAN program and its use. Chapter V

evaluates the program with various random errors against

known results, both, quantitatively and qualitatively.

Finally, Chapter VI provides the conclusions from this study

and recommendations for future endeavors in planar array

design analysis.
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II. Array Antenna Fundamentals

In this chapter, we will investigate the properties of

radiators which are grouped together to create an array.

The factors which will be found to have a major influence on

array performance are the spatial distribution and orienta-

tion of the individual radiators and their relative excita-

tions in amplitude and phase. The goal of the ensuing

analysis is to show the dependence of the radiation pattern

on the aforementioned factors.

The analysis begins with a time harmonic statement of

Maxwell's equations. The vector potential function and

equations governing it are introduced; its solution given in

terms of the source distribution. The power density of the

radiated field is expressed in terms of the vector potential

function, and is, thus, connected to the sources. The

resulting integral can be used as the basis of synthesis or

analysis.

Applying this integral to a system of discrete, identi-

cal radiators, the pattern is shown to be the product of two

expressions: the element factor and array factor. The

concept of a linear array is examined with consideration

given to pattern shape and scanning the main beam.

The following analysis includes a section on pattern

synthesis. The two kinds of pattern synthesis considered

are the Dolph-Chebyshev and discretized Taylor fi-parameter

methods. The specific theory behind these synthesis methods
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is riot presented, instead, the expressions used in the

program to calculate the weights are presented. The theory

behind these two methods is well documented in the litera-

ture (4,9,10,12,23,24) and need not be repeated in this

paper.

The chapter concludes with the development of the

radiation pattern when the elements are assumed to be spaced

in a two dimensional matrix in a plane, which leads to

planar array theory. Again pattern shape is discussed as

well as the ability to scan the array in two angular coor-

dinates.

Preliminaries

In order to begin our derivation of the planar array

radiation pattern, we will need the time-harmonic Maxwell

equations for linear, homogenous, isotropic mediums:

V X E -jWAH (2.1)

V X H =jwe + J (2.2)

V - E = p/6 (2.3)

V • H= 0 (2.4)

and the continuity equation:

V • J = -jWp (2.5)

where J is the source current density and p is the source

charge density and j = V . The quantities J and p are

constrained to the surface for perfect conductors since the

internal electric fields are zero. Therefore, the field

quantities J and p are actually written as Js and p. indica-
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ting they are surface quar. ities. The permittivity and

permeability are e and A, respectively. All fields (E, H,

J, and p) are both spatial (xy,z) and temporal (t) func-

tions. The time dependence, ejct, is assumed for all fields

and is suppressed throughout this paper.

Since the electric (E) and magnetic (H) fields are

coupled in Maxwell's equations, we must solve the equations

simultaneously to determine E and H from a given current

distribution J. We can solve Maxwell's equations by intro-

ducing a vector potential A and a scalar potential 1. These

two potential functions serve to decouple Maxwell's equa-

tions, so that we can obtain the electric and magnetic

fields solely as functions of the vector potential. We can

find the electric field from (23:10):

E = -jwgA + V(V • A)/jwE (2.6)

or (13:3):

E = (jwe) I(V X V X A) (2.7)

and the magnetic field from:

H = V X A (2.8)

We find the vector potential A by solving the Helmholtz

equation:

VIA + wjAEA = -J (2.9)

The total solution to the Helmholtz equation (2.9) is

(23:13):

A(x,y,z) = Jf[J(x' ,yhz)' jkR/4rR ] dV1 (2.10)
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The geometry is shown in Figure 2. The coordinate system

shown is used to describe both the source point and the

field point. The vector r(x,y,z) is the vector from the

coordinate origin to the field point P. The vector

r'(x',y',z') is the vector from the coordinate origin to the

source point where the complex vector current density J is

flowing as shown in Figure 2. In equation (2.10),

k = w (eo ) 'h = w/c = 2r/A is the wave number, or free space

propagation constant, c = (0e0 ) 
- = fA is the velocity of

light, A is the wavelength, and f is the frequency. The

distance from the source point to the field point is

R = Ir - r'I, and the volume (V') is chosen large enough to

encompass all antenna sources, in our case the array.

Radiation Pattern

A radiation pattern is a graphical representation of

the far field radiation properties of an antenna (23:17).

Referring to Figure 2, R is given by:

R = [(x-x,)2 + (y-y') 2  + (Z-Z '2 (2.11)

Converting the rectangular cartesian coordinates to spheri-

cal coordinates using, x = rsinocosp, y = rsinosino, and

z = rcoso, we have:

R = [(rsin~coso - x')1 + (rsinosino - y,)l

+ (rcos9 - zI')21 (2.12)

In order to simplify the expression for R, we can make use
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of the binomial theorem and note, that if

r >> r' = (x'2 +y, 2 + Z,2) , then we can write:

R z r - x'sinocoso - y'sinosino - z'coso (2.13)

where we are disregarding any terms of higher order than r-1

for large r in the binomial expansion (13:4). In the denom-

inator of (2.10) we let:

R ; r (2.14)

However, in the phase term we must be more accurate and will

z

Field Point
P(xy,z)

Source R

0 (Origin)-

"4

x

Figure 2. Radiation geometry
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use (2.13). Now (2.10) becomes:

A~~~)= (e~ikr/ 4 r) fffvJ(x'',
A(x,y,z) , ,z )eirdx dy'dz (2.15)

where

r = k(x'sinocoso + y'sinocoso + z'coso) (2.16)

Simplifying equation (2.15) we have:

A(x,y,z) = (ejkr/4 irr)U(6, ) (2.17)

where:

(10 = ] J(x',y ,z )eJrdx 'dyldzl (2.18)

is the unnormalized field pattern.

The factor e jkr/4rr is recognized as representing an

outward traveling spherical wave. Thus, A(x,y,z) is an

outgoing spherical wave, with a directional weighting func-

tion U(0,0). As we will show, the radiation pattern can be

expressed in terms of this weighting function (13:4).

To develop the radiation pattern, we must begin with

equations (2.6) and (2.8). Performing the curl operatic s

in spherical coordinates, and retaining only the terms in

r' (called the radiation terms) we find (13:4):

H = -jkr X A (2.19)

and

E = jkur X (i X A) = -jk7AT (2.20)

where r is a unit vector in the radial direction and

= (gc,/EO) = 377 ohms, the free space impedance.

A T =Ao + A. is the transverse part of A, where and
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are the unit vectors in the theta and phi directions, re-

spectively. We can see that the radiated electric field

differs from the transverse magnetic vector potential func-

tion by only a multiplicative constant (13:4).

The complex Poynting vector yields an average power

density which we can write as:

P(0,0) = Re(E X H*) (2.21)

or

F(O, )= I k27/(47ir) I ( U0 U; + U0 U ) (2.22)

where Q* or Q* signifies the complex conjugate of the vector

Q or scalar Q, respectively. The 9-polarized pattern or

vertically polarized pattern associated with E. is given by:

Pr0 (, ) = [k2n/(47rr)2] IUO( ,P)I2 (2.23)

and the O-polarized pattern or horizontally polarized pat-

tern associated with E. is given by (13:5):

Pr,0(0,¢) = [k2n/(47rr)2 ]  U 0 (,P)I2 (2.24)

In equations (2.23) and (2.24), the subscript r is used to

denote the radial component of P. Changing the spherical

unit vectors to their cartesian counterparts via the rela-

tions:

; = xcosocosp + ycososinp + zsino (2.25)

0 = -xsino + ycosp (2.26)

we can write the 9 and p components of U from equation

(2.18) as:
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,0J0) = jfv -coscosoJx(x',Y',z')

+ cos~sinJy(x' ,y' , z') + sinoJz(x',y' , z')]

X exp(jI)dx'dy'dz' (2.27)

and

UO(0",) = AX(-,[-sinoJx(x',y',z') + cos(PJy(X',y',z')]

X exp(jF)dx'dy'dz' (2.28)

Equations (2.27) and (2.28) are the key results of our

development and form the basis of the pattern analysis and

synthesis that follows (13:5). If we start with known

current distributions, U, and U. can be determined from

(2.27) and (2.28) and then used in (2.23) and (2.24) to

deduce the radiation patterns. This is the analysis prob-

lem. Conversely, if desired patterns are specified, (2.27)

and (2.28) become integral equations in the sought-for

current distribution. This is the synthesis problem

(10:30-31).

Linear Arrays

Next, we will develop the necessary equations for

linear arrays with various excitation schemes, along with

two of the more familiar pattern synthesis methods. We will

consider arrays of discrete, identical elements, namely

center fed dipoles. The dipoles will be assumed to have a

sinusoidal current distribution. A discussion of the dipole
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used in this study is in Appendix A. The formulation for

linear arrays can be directly extended to planar arrays.

Arrays of Discrete, Identical Elements. Consider now

an antenna consisting of M+1 identical discrete radiating

elements. By identical, we mean that any two of the ele-

ments can be made congruent by a simple translation. We can

select a reference point Pi(xi,yi,Z) in the ith element, and

find a point P,(x 1 ,yj,zj) which occupies the same positio-l in

the jth element. This collection of M+1 reference points

serves to describe the relative positions of the different

elements. We then establish local coordinate systems cen-

tered at each of these reference points.

If we let x! = x' - x,, y! = y' - yi, and

Z! = z' - z,, we can define any point Q(x!,y1,z') in the

iTh radiator, relative to its characteristic point

P,(x,,y,,z (10:115). This situation is depicted in

Figure 3. Then for example, at any point in the i th radia-

tor:

J+(x'y'z) +z )  (2.29),'X Y" ' = J (xi~x I Yi+i I iI

similarly, for any point in the j th radiator:
ax~ ', ', ') a~x+x!,yj+y',z +z') (2.30)

Since it is assumed that all elements are identical, and

similarly oriented, if I. is the complex total current at

the terminals of the ith radiator, and I. is the complex

total current at the terminals of the j'h radiator, it

follows that, if x! = x!, y! = y!, z! = z!, then from
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Figure 3. Positional notation for array elements

Elliott's work (13:7):

Jx (xi+x!, Y+Y! , i I Ii
= (2.31)Jx (x +x! jy Z

because Jx is being determined at corresponding physical

points in the two elements.

Elliott (13:6-8) has shown that by using (2.31), equation

(2.28) can be written as:
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UO (0, (1 j/ (I/0)

i=0

X exp[jk(xisinocoso + yisinosin) + zicoso)]

X fffV6[-sinJx(xy ,z1 ) + cos4JY(xO,yO,zO)]

X exp[jk(xlsinocos) + ylsinosino + zocos6)]

X dx~dyldz; (2.32)

In (2.32), the origin of the principle coordinates was

chosen at the point P0 (x0 ,y0 , z0 ), which will become the

center of the array. We can rewrite (2.32) as (13:7-8):

UO(8, ) = UOa(OO)UOe(9 ,O) (2.33)

where

U0,a(,4 ) = (Ii/I0)
i=0

X exp[jk(xsinocos) + yisinosino + zicoso] (2.34)

is the array factor for the q5 component of U and:

U ,e(9',) = / [-sinpJx(xOyOz ) + cosOJy(x ,y 1,z)]

X exp[jk(xosinocos) + yosinosino + zocos9)]

X dx dy~dz; (2. 35)

is the element factor for the 4 component of U. The element

factor is the contribution to U. of all the currents in the

first element. Because of the identical configuration and

orientation of all elements, this contribution is the same

for all other elements, except for the differences in posi-
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tion and excitation. These later two contributions are

accounted for by the array factor, equation (2.34) (13:8).

Similarly, we can rewrite (2.27) as:

U8(9, ) = Uea(B, )U0,e(O,) (2.36)

where:

Uea(0'0) = (Ii/I )
i=O

X exp[jk(xisinocoso + yisingcosp +zcoso)] (2.37)

and:

UOe(0,0) = ///[cos~cosoJ,(x;,y;,z;) + cossinOJY(xOy ,zO)

- sinOJz(x,yO,z )]

X exp[jk(xOsinecosO + y~sinosino + z~coso)]

X dx~dy~dz; (2.38)

are the array factor and element factor, respectively, for

the 0 component of U. Equations (2.33) and (2.36) exhibit

the principle of pattern multiplication (13:9).

Linear Arrays - Fundamental Considerations. We first

let ri be the distance from P0 (x0,Yjz 0 ) to Pi(xi,Yi,Zi), with

a line connecting P0 to Pi having the direction cosines:

cosai; cosBi; and cosi. Then, if all the elements lie along

this common line, a, B, and I are the same angles for every

Pi This forms a linear array (13:9). The array factor

becomes:
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Ua(0,0) = (I/I°)

X exp[jkrm(cosasinacoso + cosBsinosino + cos-ycoss)] (2.39)

Now if we change the increment to start at m = 1 and write

rm = (i-l)d, where d is the spacing between elements, (2.39)

becomes:

(I,/I) X exp[jk(m-l)d(cosasin cosO

+ cosBsinosino + cosycosS)] (2.40)

We will let I. represent the magnitude of the excitation

current at the center element of the array so all other Im

currents are normalized to the center element's current.

Figure 4 shows the two array coordinate geometries for an

even and odd number of elements.

Uniformly Excited Broadside Array. Consider a uniform-

ly spaced array, placed along the x-axis with radiating

elements at positions x,=O, d, 2d, -,Md. Along the

x-axis, - B = 90 ° and a = 0* so (2.40) becomes:

Ua(O') = t (I./I0)exp[j(m-l)kd)sin~cosO] (2.41)

If all the currents are equal and in-phase (2.41) becomes:

U8 (,O) = t exp[j (m-l) (kdxsinocoso)] (2.42)

Naturally, if the entire radiation pattern were desired, we

would have to multiply (2.42) by the element factor; how-
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ever, for the time being, we will assume isotropic elements

so that Ue(0,0) =1 and Ua(OO) becomes our entire radiation

pattern. Pattern plots along the xz-plane for an even and

an odd number of elements at half-wavelength intervals are

shown in Figures 5 and 6, respectively. If the interelement

spacing is allowed to expand beyond one wavelength addition-

al major lobes will appear known as grating lobes. This

case is shown in Figure 7. Generally, it is undesirable to

I . . . I I I I . . .
N 1 0 0 1 ,

(a)
e

I . . . . . I I I II. . .
N 2 1 0 1 2 r

Figure 4. Coordinate system for an (a) even and (b) an odd

number of array elements

31



0-

-10

M -20
I 

\

-

\

-40

-20 40 6

igure 5.Radiation pattern for a six element, uniformlyexcited linear array with wavelength interelement spacing

-

2 -

-30

-40

-50-
0 20 40 60 20

THETA

Figure 6. Radiation pattern for a five element, uniformly
excited linear array with wavelength interelement spacing
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Figure 7. Radiation pattern for a five element, uniformly
excited linear array with one wavelength interelement spac-
ing showing the grating lobe at theta = 900

have grating lobes and, as a result, most arrays are design-

ed so that the interelement spacing is less than one wave-

length (23:123).

Broadside Arrays with Tapered Excitation. Next, con-

sider a uniformly spaced array placed along the x-axis so

that (2.41) applies. Additionally, we will consider a

tapered excitation with the assumption that the currents

remain in-phase. With a tapered excitation, the center

element (if an odd number of elements) or two center ele-

33



ments (if an even number of elements) receive the largest

current with its neighbors receiving smaller currents to-

wards the ends of the array where the end elements receive

the smallest current (13:13-14).

One such tapered excitation scheme is the Binomial

current distribution. To determine the excitation coeffi-

cients we can write the function (1 + x)m 1- in a series using

the binomial expansion:

(I+x) mrn = 1 + (m-l)x + (m-l)(m-2)x2 /2!

+ (m-i) (m-2) (m-3)x3/'31 + .... , jx <l (2.43)

where we let "Im" be the number of elements in the array

(4:243). If we apply this to a five element array and

normalize to the center element the current distribution is:

1/6; 2/3; 1; 2/3; 1/6. For a six element array the distri-

bution is: 1/10; 1/2; 1; 1; 1/2; 1/10. The array factor

for both these cases plotted in the xz-plane is shown in

Figures 8 and 9 for , wavelength interelement spacing. As

we can see from Figures 8 and 9, the pattern is broader thaii

the uniform array pattern (Figures 5 and 6) and the'..

side lobes.

Scanned Linear Array. Consider a uniform

array placed along the x-axis so that (2.41'

but assume the currents have equal ampli" -i unifor

progressive phase shift so that:

I M = I 0exp[-j (m-l) (2.44)

where 8x is a constant, called the pha.-; tactor
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Figure 9. Radiation pattern for a 10 element linear array
with a binomial current distribution and wavelength inter-
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(13:15). Equation (2.41) becomes:

U'(9,0) = exp[j(m-l)(kdxsin~cosp + f,)] (2.45)

which differs from (2.41) only in a shift in o-igin. Equa-

tion (2.41) represented a beam aligned at 0=0 ° , (2.45)

allows the beam to align at 0=00 where:

8X = -kdcosO0  (2.46)

or

00 = cos-1 (-×/kd) (2.47)

I3, can be used as a parameter to position the main beam in

space. If 3X is varied, the beam will scan. Figure 10

shows the effect of scanning the main beam 40' from brcad-

side for a uniformly excited linear array with . wavelength

interelement spacing.

Pattern Synthesis. At times in array antenna design it

is desired to achieve a narrow main beam accompanied by a

low side lobe level. In this section, we will discuss the

two most important narrow main beam, low side lobe methods:

the Dolph-Chebyshev method for linear arrays and the Taylor

line source method adapted for discrete arrays.

Dolph-Chebyshev Linear Array Method. Optimum

beamwidth-side lobe level performance occurs when there are

as many side lobes in the visible region (0° O 180 ° ) as

possible and when they have the same level. In other words,

for a specified beamwidth, the side lobe level would be as

low as possible; or vice versa, for a specified side lobe
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level the beamwidth would be as narrow as possible. Dolph

(9:335-348) recognized that Chebyshev polynomials have this

property and he applied them to the synthesis problem. The

reader is encouraged to read Dolph's paper or the current

literature (4,9,23) to gain an understanding of this method.

In this paper, we are concerned with an efficient and accu-

rate procedure for calculating the current values at each

element in the array for a given side lobe level.

1-

09 1
08 /
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0 5

0,4

0.4
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THETA (DEGPEES)

Figure 10. Radiation pattern for a uniformly excited, 12
element linear array with wavelength interelement spacing,
scanned at 40 ° from broadside
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One such method for calculating the current values was

presented by Bresler (5:951-952). Burns, Laxpati, and

Shelton (6:884-887) evaluated several different programs for

synthesizing low side lobe sum patterns for linear arrays in

terms of run time and precision and concluded Bresler's

nested product algorithm provided the best results, espe-

cially for larger arrays. As such, Bresler's algorithm is

used in this paper.

Referring to the geometry in Figure 4, let S(dB)>0 be

the desired side lobe ratio in decibels. Then:

S i 
s ( d B ) / 2 °

= 10  (2.48)

and the variables x0 and a are defined as:

x0 = cosh[(1/M-l)cosh1'(S)], (2.49)

and

a = 1 - 1/x1O (2.50)

If M is the total number of array elements, then the element

weights are given by (19:72):

(M-l)a-NP(n,a,M) for n = (M even)
IN-n - 1,2,...,N (2.51)

(M odd)
1 for n = 0

where NP(n,a,M) is the nested product:

n n

NP(n,a,M) c I fj (2.52)
]=M

and

fn = m(M-l-2n+j)/(n-j) (n+l-j) (2.53)

and
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SI(2 .54)

Figure 11 shows the radiation pattern of a Dolph-Cheby-

shev synthesized linear array with -26 dB side lobe suppres-

sion. Figure 12 shows the radiation pattern of a Dolph-

Chebyshev synthesized linear array with -35 dB side lobe

suppression.

Discretized Taylor h-Parameter Linear Array

Method. A second popular method for synthesizing a reduced

side lobe pattern is the Taylor line source method adapted

for arrays of discrete elements (4,10,24). This method

differs from the Dolph-Chebyshev synthesis in that the

beamwidth for a given side lobe level is not optimum (mini-

mum), but, quite -lose to optimum. Similarly, for a given

beamwidth, the resulting side lobe level will be larger than

the optimum, but not by much. Another difference is the

Taylor pattern side lobes decrease gradually away from the

main beam, whereas, in Dolph-Chebyshev patterns the side

lobes are all equal (10:162,19:77).

Taylor first perfected this method for continuous line

sources notirg the application to arrays of discrete ele-

ments (24:16-28). Since then, various authors have devel-

oped several approaches of applying Taylor's method to

arrays (12:617-621,19:77-78,26:1089-1093). The two proce-

dures used in this paper are the Null Matching method devel-

cped by Elliott and the Aperture Sampling method outlined by
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Figure 12. Radiation pattern for a 10 element, Dolph-Cheby-
shev synthesized linear array with wavelength interelement
spacing showing a -26 db side lobe level
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Figure 12. Radiation pattern for a 12 element, Dolph-Cheby-
shev synthesized linear array with wavelength interelenent
spacing showing a -35 db side lobe level
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Balanis (for line sources) (4:679-681) and implemented by

Pozar for arrays of discrete elements.

To implement these two design methods, we consider an

array of N+1 elements, spaced a distance d apart, modeled by

a line source of length L=(N+I)d, so that the line source

extends a distance d/2 past the ends of the array (19:77).

The normalized Taylor line source for a broadside array is

(4:679-681):

I(z) = (1/L) [1+2 SF(pAi)cos(27-pz/L)] (2. 55)

where

[(fi-) ]2/ (n-l+p) ! (fi-l-p)]

SF(pAfi) X [1 (7rp/Um) Ip <n (2.56)

0 Ip !Fi

is the space factor with SF(-p,A,f) = SF(p,A,fi). The

location of the nulls (u) are obtained using:

±7ra [A2 + (m- )2V lin~n
u m = (2.57)

where

C = nl [A2+ (n-)2] (2.58)

and

A = (1/7 )cosh'1S (2.59)

where S is defined by equation (2.48). The parameter n

determines the number of close-in side lobes at the design
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side lobe level and is chosen by the user. Small values of

ii yield source distributions which are maximum at the center

and monotonically decrease toward the edges. In contrast,

large values of i result in sources which are peaked simul-

taneously at the center and at the edges, and they yield

sharper main beams.

Using the Aperture Sampling method, the N+l element

weights are computed as (19:78):

i n = I(Zn) (2.60)

where

zn = -[(N/2)+l]d+nd, n=l,2,3,...,N+l (2.61)

We begin the Null Matching method by writing the pat-

tern function f(w) of an N+1 element array in the Schelku-

noff product form:

N

f(w) = H (w-wn) (2.62)
n=1

where w = exp(jT), P = kdsin0, and wn = exp(j27ruJ(N+l).

The values wn are the nulls of f(w). In terms of the ele-

ment weights, the pattern function is:

f(w) = wl+INWN-1+...+I (2.63)

where we have used I, 1 = 1. We find the element weights I,

by equating (2.62) and (2.63). This will produce the de-

sired Taylor pattern (19:78). Elliott points out that the

Null Matching method is slightly more accurate for small

arrays, however, for larger arrays, Pozar points out that

the larger number of complex arithmetic operations required

42



may lead to reduced accuracy for this method (12:621,19:78).

Figures 13 and 14 show the radiation pattern of two

Taylor synthesized linear arrays. The radiation pattern in

Figure 13 is for a 19 element linear array with 0.7 wave-

length interelement spacing, a design side lobe level of

-20 db, and i = 6, using the Null Matching method. Figure

14 shows the radiation pattern of a 41 element linear array

with 0.5 wavelength interelement spacing, a design side lobe

level of -25 db, and i = 6, using the Aperture Sampling

method. In both Figures, the first six innermost side lobes

are at relatively the same level.

Before leaving the topic of Taylor synthesis, it is

important to consider the criteria Taylor provides for

choosing the appropriate value of h. Taylor provides the

details in his paper (24:23); summarizing, fi must be chosen

such that a unit increase in fi does not increase c as given

in (2.58). This means that for a space factor SF(p,A,fi)

with a design side lobe ratio of 0-20 db, i must be at least

2; for 25 db, fi must be at least 3; for 30 db, f must be at

least 4; for 35 db, fi must be at least 5; and for 40 db, fi

must be at least 6. If fi is increased sufficiently beyond

the endpoint of the visible range, L/A, all the visible

lobes tend to become uniform. Such large values of i have

the effect of supergaining the array, a phenomenon Tavlor

examines at length in his paper (24:23,24-26). One is

encouraged to read Taylor's paper in order to gain a better
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Figure 13. Radiation pattern for a 19 element, Taylor
synthesized (h=6) linear array with 0.7 wavelength inter-
element spacing and a -20 db design side lobe level
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Figure 14. Radiation pattern for a 41 element, Taylor
synthesized (fi=6) linear array with 0.5 wavelength inter-
element spacing and a -25 db design side lobe level
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understanding of this synthesis procedure and the choice of

ii and its effects on the pattern.

Planar Arrays.

Earlier, we developed the case of a linear array along

the x-axis. Now, if we extend an additional line of radia-

tors along the y-axis we form a rectangular or planar array.

Planar arrays afford more symmetrical patterns with lower

side lobes and the ability to scan the main beam toward any

point in space.

Consider the geometry in Figure 15. If we have M

elements along the x-axis the array factor is given by

equation (2.45) or:

Ua(,O) = t(II 0 )exp[j (m-l) (kdxsin cosP+f3,)] (2.64)

where lox is the current of the center element if an odd

number of elements or center elements if an even number of

elements and we are removing the restriction that the cur-

rents have equal amplitudes in (2.45). Now, if we have N

elements along the y-axis with an interelement spacing of dY

and a progressive phase shift By, equation (2.40) becomes:

U,(Bi) = t (II 0,)exp[j(n-i) (kdysin0sinp+ BY)] (2.65)

where IOy is the current of the center element if an odd

number of elements or center elements if an even number of

elements and a=y=90 ° and B=0 ° in equation (2.40). Realizing

we have normalized the current excitations to the center

45



z
T HE TA

S2 3 5 5- J
-- 2

3

PHI
X

Figure 15. Planar array geometry

element (IOX or IOy) or two center elements, we will rewrite

(I.lOX) as I., and (lr10y) as Iln to simplify the expressions.

We can write the array factor for the planar array as

(4:261):
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Ua(O,O) = In

X[ Im, exp[j (M-i) (kdxsin9coso+Bx)]1

X exp[j(n-l) (kdysinosino+By)] (2.66)

or

Ua(,t) = SxNSyN (2.67)

where

= _ Imlexp[j (m-1) (kdxsinecosp+Bx)] (2.68)

S = t I1nexp[j(n- 1 ) (kdysinosino+BY)] (2.69)
n=1

Looking at (2.68) and (2.69), the phases 8X and 13 are

independent of each other and they could be adjusted such

that the main beam of SxM does not coincide with the main

beam of S . Usually, we require that the main beams of SXM

and S Y coincide so that their maxima be directed toward the

same direction. If we have one main beam directed along

0=0 0 and 0=0,, the progressive phase shift between elements

in the x- and y-directions must be equal to (4:263):

BX = -kd~sin6oCOS 0  (2.70)

By = -kdysin9 0sino0  (2.71)

Finally, multiplying the array factor by the element

factor for a dipole radiator (Appendix A) we obtain, in

general:

= UOe(O, )Ua( ,qP) (2.72)
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or

Ue(6,0) = UOe(8,O)SMSM (2.73)

where UO~e(9,O) is the element pattern of a dipole aligned

along either the x-, y-, or z-axis, given in equations

(A.12), (A.15), and (A.6), respectively, in Appendix A.

Summary

The first part of this chapter dealt with the deriva-

tion of the radiation pattern for antennas. Then we deriv-

ed the radiation patterns for linear arrays with identical

elements. At this point, we looked at how to scan the main

beam by controlling the phase taper across the array. We

also investigated different tapering schemes, namely, uni-

form, binomial, Chebyshev, and Taylor fi parameter, for

controlling the side lobe level and beamwidth. Finally, we

developed the radiation pattern for a planar array in the

xy-plane. In the next chapter, we will take into account

small perturbations in the location of the array's elements,

the element's drive amplitude and phase, and non-identical

element factors and proceed to develop an average, or ex-

pected, radiation pattern for a planar array.
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III. The Effects of Random Errors on the Array Pattern

This chapter deals with the effects of various random

errors on the array pattern. We will derive the average, or

expected, radiation pattern factor for a planar array fol-

lowing Skolnik's methodology (22:228-231). We will include

translational errors in the positions of the elements,

errors in the element's drive amplitude and phase, non-

identical element patterns, and missing elements much as

Allen did in deriving his average array pattern for a linear

array (1:264-268). Rotational errors in the elements will

not be considered since Elliott concluded they were rela-

tively unimportant in the analysis of random errors

(11:120). The expected radiation pattern for the planar

array derived in this paper will have the same form as the

expression derived by Allen (1:288) for the linear array.

After deriving the expected radiation pattern we will devel-

op an expression for the change in directivity due to random

errors.

Sources of Errors Affecting Array Performance

We can write the no-error pattern factor of a planar

array, taking into account the element factor, as:

U(P, ) = U8,e(8,1) E a mn
m=1 n=1

X exp Ijk[(m-l) (I,-L')+(n-1) (u-iuo)] (3.1)
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where:

v kdxsino cos (3.2)

V0 = kdXsinOOcosPO (3.3)

u = kdysino sinp (3.4)

u0 = kdysino0 sino0  (3.5)

and dX and dy are the interelement spacings in the x and y

directions, respectively, and we are assuming the array is

linearly phased to point the main beam in the direction 0,

0". The function Ueoe(0,0) is the unnormalized element

factor which is the average pattern of the array elements in

the array environment.

Instead of actually realizing the field in equation

(3.1), one would in practice obtain a field:

U(8, ) =U9e;m(O'O)a'exp[-j(m-l) °]

X exp[-j(n-l)u0 ]exp(5n)exp(jkr'man"r) (3.6)

where U8,e;mn(Oip) is the actual pattern of the mnth element in

its array environment, with respect to a coordinate system

centered on the mnth element. The quantity a n represents

the value of am with error and 6_ is the phase error of the

mnth element drive. The exponential expressing the phase

delay of the elements at the far-field point is generalized

to allow for mechanical error in antenna placement. The

vector dot product is written in spherical coordinates as:

r r = xmnsinocosp + ynsinosino + zmcosg (3.7)
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where the "center of radiation" of the mn'h element is at

Xmn, y ',, zm (1:265).

Reduction of Errors to Pure Amplitude and Phase Errors

As we can see from equation (3.6), many errors manifest

themselves as amplitude and phase errors. This is easily

seen by recasting equation (3.6) in the form:

M NU(O,(P> = UO,e(9,0) I:;_ bm (9,'0)exp Ejp",( ' ) 1
mIn "] n=

X exp[ijk[(m-l) (v-v 0 )+(n-i) (u-u 0 )]] (3.8)

where for particular angles 0 and p, the apparent amplitude

of the mn th element is given by:

b ( , ) O e;mn ( ,0)/O,,e( , )1 ] mn (3.9)

and the apparent phase error term, T.(O,O), by:

q(, €) = 6n + k[xn-(m-l)dx]sinocosp

+ k[y,,-(n-l)dy]singsin + kz cosf (3.10)

where k = 2v/A.

Statistics of the Apparent Amplitude Error. We can

write the element factor of the mnth element fo. particular

angles 0 and (p as:

UO,e;mn(0, ) = U0,e(9,O) [i + U,(O,()] (3.11)

51



where the , are samples of a random variable and are

assumed to be normally distributed with a zero mean and

variance c2 (9,) .

The amplitude error of the drive to the mnth element is

handled in a similar manner by assigning a random component,

L, to the drive amplitude. This is assigned in a multi-

plicative manner as (1:267):

a n = (1 + Lt,) am (3.12)

where the L are samples of a random variable and are

assumed to be normally distributed with a zero mean and

variance a .

Adding a reliability factor, r., we can write:

a., = rm(l + Amn)amn (3.13)

where r. = 1 with a probability P, and zero with probabil-

ity 1 - P. Finally, we can write (1:267):

b, = [i + Am, ,)] [1 + Ajrman (3.14)

With these assumptions, we can write the mean and mean-

square of the mrth element's apparent amplitude as:

bm(9,¢) = amp (3.15)

and
(00 = P 2 C2 + 0.2 ( ,6

mn Pa,(l + VO(6,p) + I A (8, )oa) (3.16

Separating the catastrophic failure from the An factor, the

variances in the A and A cross product term will be much

less than unity in practice and their product can be ignored

in (3.16) without much loss of accuracy (1:267). Letting:
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2 2 ) + a2 (3.17)

we can write equation (3.16) as:

= Pa [1 + a2(OO)] (3.18)
where 2, is the amplitude variance.

Statistics of the Apparent Phase Error. In finding the

expected power pattern we will be taking the complex conju-

gate of equation (3.10), multiplying the result by equation

(3.10), and then finding the average denoted by an over-

bar, such that:

exp[ [ "(O, '0- T (,) = exp[j(6n - 6 )]

X exp[jk(xn - xp)sin6coso]

X exp[jk(y - yf)sin6sino]

X exp[jk(z,, -z7)cosO] (3.19

where it is assumed that 6 m, 6 q, xa, xp, Y, yp, zr, and

g are all statistically independent random variables

(22:229).

Assuming that the phase error 6 (we have dropped the

subscripts for simplicity) is described by the gaussian

probability density function with zerc mean (22:230):

p,(6) [1/(2rrXY) exp[-65/(2T)] (3.20)

where 62 is the variance (generally denoted a2 ) or mean-

square value of the deviation about the average, which
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average here is zero. The probability density function

pl(S), when multiplied by the infinitesimal d6, gives the

probability of finding the variable 6 between the values of

6 and 5 + dS. The gaussian probability density function is

chosen because it is a good description of many types of

errors that occur in practice (22:23C). The gaussian as-

sumption will be asymptotically true if the phase error 6 is

due to a number of :auses and such errors are small so that

a linear relation exists between the cause of the phase

error and the error itself (22:230). By asymptotic, it is

meant that as the sample size is increased, the dispersion

in the associated sampling distribution of the mean decreas-

es, reflecting the increased clustering of the sample means

such that the gaussian distribution is obtained (18:302).

Let y = 6 - 6p so that the problem becomes that of

finding the average value of e j y . From the defiiition of

the average value we have (22:230):

exp(jy) = exp(jy) p(y) dy (3.21)

where p(y) is the probability density function for the

variable y. The probability density function for 6 is given

by equation (3.20) and is needed in determining p(y). The

variable y is a function of two independent variables 6,,

and 6 (we have defined them to be independent so long as
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m * p, n - q). The joint probability density function for

the two independent variables is the product of the individ-

ual variable's densities (22:230):

p(6nn,Sp) = p1(6")p 1 (6 ) = p1(y+6S )p1 (6p) (3.22)

By substituting p1(6) given in equation (3.20) into the

integral for p(y), we find the average value of ejy to be

(22:230):

exp(jy) = os(y)p(y)dy + j fsin(y)p(y)dy (3.23)

The second term is zero, provided the integral exists, since

an odd function integrated from -o to +o is zero (sin(y) is

an odd function, p(y) is an even function). Substituting

the PDF of equation (3.20) into (3.23) and using (8:201)

f00exp(-alx)cos(2px)dx = [7r'/(2a)]exp(-p /a-) (3.24)

to perform the integration on the first integral, we find

(22:230):

exp(jy) = cos(y) = exp(--2 ) (3.25)

Following a similar procedure for the second term

averaged in equation (3.19), using (3.24), we find:

exp[jk(x,,,-xp)sing cosP] = exp(jk-ysinecosp)

= exp[ k2 sin2 ( )cos' (p)] (3.26)

Similarly:
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exp(jk-y sinOsino) = exp[_vYy k sin2 (0)sin' (P)] (3.27)

and:

exp(jkyzcoso) = exp[r-zk2cos' (8)] (3.28)

where yy = ym - Yp and 7z =zmn - zp.

Power Pattern

The power, or radiation, pattern is:

IU(9,0)1 2  = U(O, lU*(OP)

2= 200 bmn(0 (p) b* 0 6,P)

X exp[i[PM,(O,(P) - fqOP1

X exp[j (m-p)(v-w,)]exp[j(n-q)(u-u 0 )] (3.29)

Substituting equation (3.14) for b.(O,p) and a similar ex-

pression in terms of p and q for b*(9,p) into (3.29) we

get:
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Iu(9ek) 12 = Ue9~

X U 1 + kL(0,c)] (1 + )r

X [Li + (,0()] (l + A)r a

pq pqapq]

X exp[j[,(OP) - 4"(8,¢)]]

X exp[j[(m - p)(v - 10) + (n - q)(u - uO)]]

(3.30)

This power pattern is a random quantity since r, .,, g,

and T are random variables. Now, we want to obtain the

average power pattern. T. start, we must separate the

summation into two parts by separating those terms in which

m = p, n = q from the remaining terms in which m , p, n * q.

This is done so we can apply an axiom in probability theory

which states that the mean of a product of statistically

independent random variables is equal to the product of the

means of these random variables. The variables L., L,

A (0, ), A (O, ), f ,p (0,(p) are independent if and

cnly if m - p, n o q (22:229).

Considering only those terms in the power pattern which

are statistically independent and applying the aforemen-

tioned axiom yields:
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mop,= Ue(9,,)P a a*
(mop, no,,q)

X exp[(6S- ) + k(xm-x )sinocoso

+ k(ym-yp)sin6sinP + k(zmn-zp)coso]

X exp[j (m - p) (u - /0)]

X exp[j(n - q) (u - u') (3.31)

where
b- = Pa (3.15)

and

b-- = Pa (3.32)

have been used. In obtaining equation (3.31) we assumed

Ii and Amu(O,cP) are zero mean and that rrm = P (22:230).

Substituting equations (3.25), (3.26), (3.27), and (3.28)

into equation (3.31), we can write:

--U( , , ,~ = U0,( 2 aP2

_ 2k sn os*ITI=1 , r wplq1

X exp(-62 ) exp(--y Iksin' cos p)

X exp(--flk 2sin9sin'p) exp(--ylk 2cos2 9)

X exp[j (m - p)(V - V0)

X exp[j (n - q)(u - u0 )] (3.33)
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Now for the terms m =p and n = q, we find:

M N

m 0= Up,nq ,ee(9 , ) b: (0,0 )  (3.34)

where b1n(6,p) is given by equation (3.18). We can write

equation (3.34) as:

M N

1U(0~ r=p, n~q = U 2e(9ic0)P[1 + a~9,) 2 a 2 (3.35)
m=1 n=1

The average power pattern is the sum of the m o p, n s q and

m =p, n =q terms (22:231):

U(0,O) 2 = U20e( op)P2exp(-6)

X exp k (2 sin 2 cos2 + -Ysinl0sin 2 + Y7Zcos 0)

MN M N
X a~a

(mo'p, n#q)

X exp[j[(m - p)(p - vO) + (n - q) (u - u0)]]

M N
+ U e(9()[1 + aC(o,8)] n a M  (3.36)

In order to simplify matters, we will let:

,AP ( , e) exp[[2 + k' (-y2sin2 0coS2¢

+ -y sinz sin 2 + 7y2zCOS2 0) (3.37)

Adding the terms m = p and n = q to the first summation and

subtracting them as separate terms, so as not to include

them twice, the average power pattern becomes (22:231):

59



( = P 'Ap(9"() Ue(6 ,$I)mt N
--1n=1 "p=1 q=1

X exp[j [(in -p) (1/ - L/o) + (n -q) (u. - u 0 )]]

+ Uee(9,¢) [ + C2(,)]P - P

M N

X an (3.38)

Simplifying, we find:

lU(e, p) i2 = 2 ~(c)U(,)~ 20 12 = p2 p0, l (0,0) 12  + U2,e , )

+aD(,p)]p - ( ,) am  (3.39)
m=1 n=1l

Equation (3.39) is the sought for result of our analy-

sis. This equation has the same form as Allen's equation

(82) for a linear array (1:288). The effect of random

errors is to produce an average power pattern that is the

superposition of two terms. The first term is the no-error

power pattern multiplied by the fraction of the elements

remaining and the apparent phase error. The second term

depends on the apparent amplitude and phase errors and the

fraction of elements remaining and is directional only by

the element factor and the terms in the apparent phase error.
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Random Error Effects on Array Directivity

In order to predict the effect of random errors on the

array's directivity, it is useful to formulate the average

power pattern of the array normalized to a no-error peak

value of unity (1:287). Then, by definition, the average

power pattern is:

P(0,0) = U(0,p)U,(O,P) = IU(0,0) j2 (3.40)

where IU(9,o)W2 is given by equation (3.39). In preparation

for what follows, in equation (3.39) let:
2

A(0,0) = 1 + (A(O0) - P ( 9 ,@) (3.41)

so that equation (3.39) becomes:

IU(0,0) 1, = p2 AP(9, ) IU0 (O, ) 12

M N
+ UOe(8,O)P A(0,0) am (3.42)

Now, for the directivity calculation the absolute value of

JU(O,c) I' is immaterial, so we can divide equation (3.42) by

P kAp(O,() and use the form (1:287):

iU(,0) 12 = JUo0(,p) 2

M N

+ [Ue( , )/P] 2 (,()Oi Z amn (3.43)
m=1 n=1

where:

I2(6, ) = A(0,p)/,AP(6,( )  (3.44)
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If we define a no-error efficiency (?7) of the array ampli-

tude taper as (1:274-275):

= [ _a.2/N 2_ (3.45)

we will obtain (1:288):

M N 2 - 12N
a n  = a, / (t7MN) (3.46)

and:

S 0  / U7e(9,0)MN (3.47)

so that:

IU 01(p ) 12 = ,e 0,00)] a_ 2 (3.48)

Therefore, we can write equation (3.43) as (1:288):

1U(e, ) L2 = U 0( , ) 12  + Uo( o, o) 1

X [[Ul" ,(pi) E2 ( 0, )] [U2"e( 0 0, 0) fMNP]] (3.49)

Allen states that:

We have previously seen that the percentage pattern
error near the beam maximum is trivial, or else the
Central Limit Theorem is not applicable. Further, if
the array is large and the correlation interval of the
far-field is small, we would expect that the total
radiated power would vary minutely from the average for
nearly all such arrays. Thus, one would expect that a
directivity value derived using (84) as the actual
power density distribution over all space would be a
satisfactory approximation. (1:288)

Allen is speaking from the context of his paper where he has

shown that the percentage pattern error near the main beam
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is trivial. The equation number (84) is the same, in form,

-is equation (3.49) presented in this paper.

The main beam directivity is given by:

D(40, o) = U( 0, 0 p) Idf2 (3.50)
,Space

-:,.here:

dQ = sinododp (3.51)

S -hstituting equation (3.49) into (3.50), we find:

D(90 , o) = 4rlUO 0 , 0) I2

- [ff~o6~)Idfl + [l Uo92 / MN PI

X 2(6, ) 2, (O,(P)/U2,e(60/00) d (3.52)

In Jeriving (3.52) it was assumed that the statistical side

Lobe level can be neglected compared to the peak intensity

so that the second term in (3.49) can be disregarded in the

numerator of (3.52)(1:288;22:233). We can denote the no-

error directivity as D0(60,0 0) and divide numerator and

denominator of equation (3.52) by 4vJU 0 (00,0 0 ) 2 and we have:

D( 10) =[11DO(010) I+ (l/47TflMNP)

x 2 (9 1 ) 2,e(O,O)/U 2,e(o0, 0) d 1(3 .53)

Before we proceed, let us consider the anqle dependence
2

-;f -,$) . We remember that A(6,0) depends upon o(-;,o)

: h contains two terms:

2 2 2
C + a. (3.17)
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2 is angle invariant. However, note that the term

the element factor variance about its average, may

vary with angle and may well become larger, as Ude(8, )

becomes small (in the side lobe region of the element)

(1:289). Now we need to examine the angle dependence of

C' (0 ,p) :
AP( 0

P( = exp + k2 (-'sin2 cos2

+ Ysin20sin2 + y cos2 0) (337)
Y z 1j

where, again, y2, -vy, and -y are the variances in element

radiation center location. Allen notes that, if all the

variances are roughly equal, then the angle dependence of

iAP(
8 ,¢) vanishes and we can write (1:289):

TAP= exp[-(62 + k2 Y)] (3.54)

All the angular dependence of e2 has now been considered.2l
Thus, E 2(0,) is only weakly angle dependent (1:289)

and we can write (1:289):

(i/4 ) / ~(0,0)/U2,. (doo)]dn

E 2 (2 1
= [4 U .e( 0 ,1 0)/ .e(0 , )d

= [d(0 0100) 11 (3.55)

where d( 0 ,po) is the element directivity in the 9o,0o direc-

tion. Hence:
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D( 0010 0) = [l/Do(9ai/Po) + 2 /[d(9 0 ,0O),?MNP]]_1 (2. 56)

Allen states we can write the no-error array directivity as

(1:289):

D0 (0,kop0 ) = d(60 , 0) MN (3.57)

assuming an array with at least 25 elements (1:208). Thus

we can write our final result ab (1:290):

D(00100 )  = D0 ( 0 100) [1 + (E2/P)j (3.58)

Summary

We have derived the average radiation pattern for a

planar array to include translational errors in the posi-

tions of the elements, errors in the element's drive ampli-

tude and phase, and the probability of the average fraction-

al number of elements that remain operating. We have also

considered the effects of non-identical element patterns on

the overall radiation pattern. We saw that the average

radiation pattern consists of two terms. One term is the

no-error radiation pattern of the array modified by the

square of the fraction of elements remaining and by a factor

proportional to the apparent phase error. The second term

depends on both the apparent amplitude and phase errors, the

traction of elements remaining, and the element pattern

factor. It also depends on the array's excitation. Lastly,

we derived an expression showing the effects of random

errors on the array's directivity. In Chapter IV, .ye will
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convert the theory of this chapter and Chapter II into

FORTRAN code in order o rapidly assess the effects of

random errors on certain performance characte-istics of the

array under consideration.
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IV. Program Mechanics

The main objective ot this project was to write a

FORTRAN program that emulates the theory of the last two

chapters, whereby, the antenna designer or program manager

can assess the performance of their array antenna based on

the theoretical design and the actual design with toler-

ances. This chapter explains the program that was written

to perform the analysis. We begin the chapter with the

overall layout of the program, followed by the program

development and validation. We will specifically look at

what was used to calculate a particular performance standard

or obtain data points for a pattern plot.

Program Layout

The software written for this project consists of one

cain program and 27 subprograms. A list of the programs is

in Appendix B. The main program (PARRAY.FOR) controls the

order of processing while the other subprograms perform a'.

the calculations. The program is intended to be user

friendly, efficient, general enough to consider all types of

arrays, and to run on a personal computer. However, there

were two compromises involved in writing the program. The

first compromise was between efficiency and being general

enough to consider all design cases that could arise. We

II get to some specific cases a little later in the chap-

ter. The second compromise involves the FORTRAII language
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and creating a user friendly program. Through the course of

the program the user is prompted to enter certain data.

Scme of this data is entered as integers (numbers without

decimals) and some as real numbers (numbers with decimals).

If a real number is entered when an integer is asked for,

the program terminates with a DOS run time error. So, care

must be used when entering data. The program does specify

what type of number to enter. Also, along the lines of

being user friendly, each time the user enters a datum, that

datum is returned by the program for the user to verify

before proceeding. This ensures that the user has input the

right number or action so that time is not wasted calculat-

ing performance standards for erroneous data. Now we will

take a look at the overall layout of the program.

The program can be broken down into five parts. The

first part consists of the data entry routines. The user

input- the center operating frequency or wavelength and the

bandwidth of operation and the number of elements, interele-

ment spacing, and type of pattern synthesis in the x- and y-

directions of the planar array. The user also selects the

type of array element to be used and its orientation and

length if required. Finally, the user inputs all of the

tolerance data for the expected array. The second part of

the program consists of the pattern calculation routines.

In this part, the program calculates the data pcnts to

allow plotting the design and expected array patterns at a
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later time, if so requested. The data points for the pat-

terns in the xz- and yz-plancs can be calculated for both

the design and expected arrays at the upper, center, and

lower frequencies of the specified bandwidth. In all,

twelve files can be produced. The user can import these

ASCII files into any plotting routine, and once plots are

made, can compare side lobe levels of the design array

pattern to those of the expected array pattern. As pre-

viously alluded to, the user does have a choice as to which

frequencies of the bandwidth the pattern data points are

calculated. The third part of the program consists of the

half-power beamwidth calculation routines. Before any

calculations are made, however, the program prompts the user

to enter the initial scan angles. After the scan angles are

entered and verified, the half-power beamwidths for the

design and expected arrays are calculated at the upper,

center, and lower frequencies of the bandwidth. The fourth

part of the program contains the directivity calculation

routines. The directivities of the design array and the

change in directivity due to errors for the expected array

are calculated at the upper, center, and lower frequencies

of the bandwidth. The last part of the program sends all

data compiled to an output file and prompts the user on

whether to continue for new scan angles. If the user elects

to recompute the beamwidths and directivities for new scan

angles, the program returrs to the thir" part and the pro-
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cess begins again. Otherwise, the program terminates. In

the next section, we will discuss the specifics of how

certain standards and data are calculated.

Program Development

In this section we will discuss the development of the

main program and the subprograms and will list the routine

names as they are covered. It is important at this point to

recall that the array lies in the xy-plane with one side ot

the array extending down the positive x-axis and the other

side down the positive y-axis as shown in Figure 15. The

first element in either the x- or y-direction lies at the

origin. Let us begin by looking at the first part of the

program, the data entry and element excitation routines.

Part 1 - Data Entry and Element Excitation Routines.

The program (PARRAY.FOR) begins by asking for the center

operating frequency or wavelength. The frequency is entered

in hertz and the wavelength in centimeters. Also, all

responses to the program prompts are returned for the user

to verify to ensure the proper data was entered. Next, the

user is asked to enter the bandwidth of operation. The

bandwidth of operation is as defined Chapter I. If the user

elects to enter frequencies, there is no problem. ier,

if wavelengths are chosen, then the user must understand

that the wavelength bandwidth is not the samc As the fre-

quency bandwidth. The user must also understand that the

lower wavelength gives the upper frequency and the upper
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wavelength gives the lower frequency. Again, the user is

asked to verify the bandwidth, either in frequencies or

wavelengths. The next step is to enter the array specifica-

tions in the x-direction. First, the user enters the number

of elements in the x-direction followed by the interelement

spacing. Then the user selects the type of excitation

scheme desired. The choices are: (1) Dolph-Chebyshev

synthesis (CHEBY.FOR), (2) Taylor fn-parameter synthesis

(TAYLOR.FOR), (3) User Defined current distribution

(USRDEF.FOR), (4) Binomial current distribution

(BINOML.FOR), and (5) Uniform current distribution

(UNIFRM.FOR). Each one of these excitation schemes, except

of course the user defined scheme, was discussed at length

in Chapter II. The respective equations from Chapter II

were implemented for the Dolph-Chebyshev and Taylor fn-param-

eter synthesis methods and the Binomial and Uniform current

distribution schemes. If one of these four schemes does not

suit the user, then the user defined scheme will allow the

user to input the element weights. If the Dolph-Chebyshev

synthesis method is chosen, the user must enter the desired

side lobe level. Recalling the theory of Chapter II, the

side lobe level is entered as a positive number (in deci-

bels) and CHEBY.FOR does check to see that it is a positive

number. If the Taylor f-parameter synthesis method is

chosen, the user must enter the fn-parameter and the desired

side lobe level. The user is given an appropriate r-.ige for
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n based on the array's length and operating wavelength for

reasons explained in Chapter II. After fn is entered and

verified the desired side lobe level is entered following

the guidelines in Chapter II, Discretized Taylor f-parameter

Linear Array Method section. After the weights are calcu-

lated the user will have to decide whether to use the aper-

ture sampling weights or the null matching weights. Guide-

lines for deciding which weights to use are located in

Chapter 2. The binomial and uniform current distribution

routines are automatic. If the user selects the user de-

fined routine, then the element weights are entered one at a

time beginning at the origin and progressing down the x-

axis to the end of the array. Finally, this program can

analyze linear arrays. Therefore, if the number of elements

in the x-direction equals one, the program skips directly to

the uniform current distribution routine. Now if there are

two elements in the x-direction, then the program prompts

the user for the distance between them, then skips directly

to the uniform current distribution routine. This entire

process is repeated for the y-direction.

After the array specifications are entered, PARRAY.FOR

calls the element data routine (ELDATA.FOR). Here, the user

is asked to select the type of element to be used in the

array, The ,:ser h;s four choices: (1) a dipole oriented in

the x-direction, (2) a dipole oriented in the y-direction,

(3) a dipole oriented in the z-direction, and (4) an isotro-
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pic element. If a dipole is selected, the user is asked to

enter the dipole's length in centimeters.

After ELDATA.FOR returns control to PARRAY.FOR,

PARRAY.FOR calls the error data routine (ERDATA.FOR). In

this routine, the user is prompted for the array tolerance

data. The user first enters the RMS amplitude error.

Referring to equation (3.17) this is the term "a " which is

the standard deviation while the term "1c2" is the variance

or mean square value. Next, the user enters the RMS phase

error in degrees. This term is converted to become the term

"-" in equation (3.37). Then in succession, the user

enters the RMS error in the x, y, and z placement of the

element. These three terms become '12 , -y2 , and 2 respec-

tively, in equation (3.37). Next, the user enters the RMS

element pattern error in decibels which is the term o,(6,O)

in equation (3.17). Lastly, the user enters the fraction of

elements actually operating in the array. After all data is

entered and verified, control is once again returned to

PARRAY.FOR.

Part 2 - Radiation Pattern Calculations. The second

part of the program deals with generating the pattern plots

for the design and expected arrays. There are six routines

involved in this part of the program.

The data for the design radiation pattern plots are

generated by the routine DESRP.FOR. DESRP.FOR repeatedly

calls the subroutine PARFAC.FOR and the function ELFAC.FOR
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to calculate each data point in the pattern. PARFAC.FOR

implements equation (2.73) while ELFAC.FOR implements equa-

tion (A.6), (A.12), or (A.15) depending on the orientation

of the dipole. Obviously, if an isotropic element is used,

then ELFAC.FOR returns a value of 1.0 for each angle. The

routine DESRP.FOR calculates data points for the pattern in

the upper xz-plane from k=180 ° , 0=90' to p=0 ° , 0=90'. This

gives the radiation pattern due to elements along the x-

axis. Data points for a pattern in the upper yz-plane are

also calculated giving the radiation pattern due to the

elements along the y-axis. The routine DESRP.FOR also gives

the user the ability to scan the main beam in the theta

direction in both the xz- or yz-planes. The program auto-

matically sets 0 to 0° for the xz-plane pattern and to 90'

for the yz-plane pattern.

The data calculated for the expected radiation pattern

plots are generated by the routine AVERP.FOR. AVERP.FOR

repeatedly calls the subroutine EXPRPF.FOR to calculate each

data point for the pattern. The routine EXPRPF.FOR imple-

ments equation (3.39). EXPRPF.FOR repeatedly calls

PARFAC.FOR and ELFAC.FOR to calculate the no error pattern

in equation (3.39). AVERP.FOR follows the same process as

DESRP.FOR.

The user is given the option of generating up to 12

different sets of data to later produce 12 separate plots.

The user is asked if data points for the design and expected
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radiation patterns are desired at the center frequency or

wavelength of the operating band. If requested, four sets

of data are generated, two sets for the design pattern (xz-

and yz-planes) and two sets for the expected pattern (xz-

and yz-planes). After these data sets are calculated, the

user is asked if data sets are wanted for the lower frequen-

cy and then the upper frequency of the bandwidth. The names

of the 12 files generated and their descriptions are shown

below.

Filename Description

DESRP1X.DAT Design radiation pattern data
at the center frequency along
the x-axis

DESRP2X.DAT Design radiation pattern data
at the upper frequency along
the x-axis

DESRP3X.DAT Design radiation pattern data
at the lower frequency along
the x-axis

DESRP1Y.DAT Design radiation pattern data
at the center frequency along
the y-axis

DESRP2Y.DAT Design radiation pattern data
at tho upper frequency along
the y-axis

DESRP3Y.DAT Design radiation pattern data
at the lower frequency along
the y-axis

EXPRPIX.DAT Expected radiation pattern
data at the center frequency
along the x-axis
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Filename Description

EXPRP2X.DAT Expected radiation pattern
data at the upper frequency
along the x-axis

EXPRP3X.DAT Expected radiation pattern
data at the lower frequency
along the x-axis

EXPRP1Y.DAT Expected radiation pattern
data at the center frequency
along the y-axis

EXPRP2Y.DAT Expected radiation pattern
data at the upper frequency
along the y-axis

EXPRP3Y.DAT Expected radiation pattern
data at the lower frequency
along the y-axis

The data stored in each file is normalized to the pattern

maximum. Also, the data stored in the design and expected

radiation pattern data files is for the normalized pattern

factor squared or IF(0, ) 12.

Part 3 - Design and Expected Beamwidth Calculations.

Generally, the task of finding the beamwidth of planar

arrays is quite difficult. However, with a computer this

task can be greatly simplified as we will show directly.

This method is accurate for any array scanned in any direc-

tion.

We will assume that the maximum of the main beam is

scanned in a direction toward 0, 0. To define the beam-

width two planes within the main beam are chosen. One plane

is the elevation plane defined by the angle 0 = 0; the

other plane is perpendicular to it and contains the origin
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of the coordinate system. The corresponding half-power

beamwidth of each plane is designated, respectively, by 9h

and ih as shown in Figure 1 (4:270).

The easiest way to calculate the respective beamwidths

is by defining a new coordinate system to align with the

direction of the main beam, such that, the z-axis is once

again aligned along the boresight of the main beam as it

would be for a broadside array. We wish to express the

spherical angles 0 and 0 in tez-ms of 8' and t' with the

pointing angles 0o and 0 supplied by the user. This geome-

try is shown in Figure 16. The angles 00 and 0 are

Eulerian angles that produce two rotations in the cartesian

coordinate system to align a new primed cartesian coordinate

system along the main beam (15:107-109). Once this transla-

tion takes place, the pattern cuts can be taken in the x'z'-

and y'z'-planes to obtain eh and Th" First consider the

relationships between the coordinates (x,y,z) and (x1,y1 ,z1 ).

The (x1,Y1 ,Z) coordinate system is the (x,y,z) system rota-

ted (p about the z-axis so:

x = x1coso0 - y 1sino0  (4.1)

y = x sino0 + ylcosp0  (4.2)

z = (4.3)

This step is depicted in Figure 17(a). We can express

(4.1), (4.2), and (4.3) in matrix form as:
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Zzz

Y JYI

Figure 16. Geometry for beamwiidth calculations

[X] r7o -silcpo 1 xli
[.Lj±I WO cosoc Y (4.4)

Now consider t.e relationships between the coordinates

(x.,,yl,zl) and (x',y',zl) . The (xI,yl,zl) coordinate system

is the (x11y11 z1 ) system rotated %. about the y1 axis. So:
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x, = x'cos o  + z'sinf , (4.5)

Y, = Y' (4.6)

Z1 = -x'sin 0 + Z'COSO0  (4.7)

This translation is depicted in Figure 17(b). We can write

equations (4.5), (4.6), and (4.7) in ratrix form as:

x i  cos 0 0 0 sin0 x '1

Yl 0 0 y' (4.8)

z I  -sino, 0 cos 0 J z '

z
/

y

xl
Ib

Figure 17. Coordinate translation steps for beamwidth

calculations
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Combining equations (4.4) and (4.8) yields:

[x cosOpOcosO0  -sinoo cosoosino 0 1Ix?
yI snozsoo coso0  sinoosinoo I l' (4.9)

zj L -sing, 0 cosg0  J Z'
Now consider a vector of length R drawn from the origin to a

point in space. The point has the coordinates:

x=Rsinocos~p

y =Rsinosin~p (4.1G)

z =RcosO

in the (x,y,z) system and:

x= Rsinolcoso'

Y= Rsino'sin(P' (4.11)

z'= Rcoso'

in the (x',y',z') coordinate system. Substituting (4.10)

and (4.11) into (4.9) and cancelling the R's gi4ves:[sinocoso cosolcoso0  -sin00o cosco0sin 0] sin6 'coso]

sin9sin~p sinoocosgo cosoo sinoo0sinoo sin9'sino' (4.12)

cooJL -sineG 0 L.0soo j cos J
which gives:

sinecoso = 'qine I(cos(P0cos90 cosp I - sinopcsinot

+ cos(PsingocosO 1 (4. 13)

sin6sino = sing I(sin~p0 cos 0 cosp I + ccs~psino'

+ sin~osin~ocosO' (4. 14)
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cosO = -sin 0sinl'coso' + coso0cose, (4.15)

Now the expressions for sinocosp, sinesinp, and coso in

terms of go, o0, 6', and (' are substituted into the rou-

tines PARFAC.FOR, ELFAC.FOR, and EXPRPF.FOR to create the

routines PARFEA.FOR, ELEFEA.FOR, and ERPFEA.FOR for use in

the half-power beamwidth calculations.

To calculate the half-power beamwidths for the design

pattern, PARRAY.FOR calls DBWDTH.FOR. Now consider the

(x',y',z') coordinate system and the xlz'-plane. DBWDTH.FOR

begins by searching for the value (1/2)6 where 0' is equal

to 180 ° by varying O'in one degree increments until the

magnitude of the pattern is equal to or just less than

(1/2) '. If the magnitude is equal to (1/2)1 the angle is

stored as 9' left and the routine begins searching where p'

is equal to 0° . If the magnitude of the pattern is just

less than (1/2)Y then that angle and the one just prior are

sent to a routine that solves for the half-power point using

a Regula Falsi root finding algorithm (REGFAL.FOR). This

algorithm finds the angle to within a tolerance of 1.0(107)

of (1/2) . The angle coming out of the regula falsi routine

is stored as 0' left. The process is repeated for (' = 0 °

and this angle stored in ' right. Then eh is found by

adding a' left to 0' right. A similar process is followed

in finding *.. 0' is set to 270" and a' varied in degree

increments until the magnitude is equal to or just less than

(1/2)y'. The ro-. finding algorithm is called if the magni-
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tude does not equal (1/2) and a value returned for , left.

The same process is followed in finding 0 right where ('

equals 90 °. The bedmwidth 4h is found by adding o left and

0 right.

To find the half-power beamwidths for the expected

pattern, PARRAY.FOR calls EBWDTH.FOR. The same process is

followed here that was followed for finding the design

beamwidths.

The design and expected beamwidths are calculated for

the upper, center, and lower frequencies of the bandwidth.

This routine takes longer to run than any other routine in

the program since the =oordinate translation significantly

increases the complexity of the computations made by the

program.

Part 4 - Directivity Calculations. Calculating the

directivity for any given array is the only area in the

program where a compromise between efficiency and being

general was made. In order to be absolutely general, we

would have to calculate the directivity by equation (1.10).

However, numerically evaluating the double integral involved

in (1.10), to any degree of accuracy, would mean the use of

an integration routine with compensation. Using this type

of scheme would involve a significant amount of computer

time, especially on a personal computer. Instead, there is

an approximation for directivity which is accurate for

reasonable excitation schemes.
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The directivity of a planar array can be calculated

using (10:206):

Do = IrcOS6oDxDy (4.16)

where DX and Dy are the directivities of two broadside

arrays in the x and y directions, respectively. The assump-

tions made in using (4.16) are; (1) the element pattern is

such to eliminate the total pattern in the half space

9 > r/2 but is broad enough to be ignored in 0 :5 r/2, and

(2) the array is not scanned closer than several beamwidths

to endfire. Equation (4.16) is the one used in the program

to calci.ate the directivity cf a planar array. The follow-

ing expressio-n is used to calculate Dx and Dy (23:153):

D = [t A}]2 / [ _ tAAp[sin[(m-p)kd]/[(m-p)kd]]] (4.17)

which is valid for a broadside, equally spaced array.

Equation (4.16) is sufficient for dipoles up to approx-

imately one wavelength in length. As the length of the

dipole increases beyond one wavelength (L>A), the number of

lobes begin to increase and the main lobe becomes narrower,

thus negating the assumption that the element pattern is

broad.

Linear arrays can also be considered by the program,

and code was added to calculate the directivity of a linear

array scanned at some angle 00. The expression used for

this calculation is (23:153):
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- P ~AAexp j(amcta) ] [S if[k(zm-z P)][k ( zm,-z P)]] (4. 18)

where ai = -k(m-l)dicos90.

It is also possible to calculate the directivity and

directive gain of a dipole at given angles 6,0 should the

appropriate parameters be entered. The directivity of a

dipole is calculated from (4:124-126):

Do = 2 Udip(8IO) L ./Q (4.19)

where:

Q = 7 + ln(kL) - C1(kL) + sin(kL)IS,(2kL) - 2Sj(kL)]

+ kcos(kL)F + ln(kL/2) + C,(2kL) - 2Ci(kL)] (4.20)

The maximum value of U(8,0) varies and depends on the length

of the dipole. The functions C,(x) and Si(x) are the cosine

and sine integrals, respectively, and are defined by

(4:744):

Si(x) fox(sinr/r)dr (4.21)

Ci(x) t (COST, IT (4.22)

Ci(x) can also be found from (4:744):

Cf(x) = y + ln(x) - Cin(x) (4.23)

where:

Cin(x) =f[(2. - cosr)/j]dr (4.24)
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The constant 7 in the preceding equations is Euler's con-

stant. The directive gain for a dipole is (23:36):

D(0,0) = D0jU(O,O) 1l/U( ax,@a) 12 (4.25)

Equations (4.16) through (4.21), (4.23), and (4.24) are

used in the code to calculate the required directivities.

The directivity for the planar array (or linear array, or

dipole) is calculated at the upper, center, and lower fre-

quencies of the band in the routine DESDIR.FOR. The direc-

tivities for the planar array and linear array are computed

directly in DESDIR.FOR. If the directivity for a dipole is

called for, DESDIR.FOR calls DIPDIR.FOR. DIPDIR.FOR in turn

calls the functions SI.FOR and CI.FOR to calculate the sine

and cosine integrals. A Romberg integration routine

(ROMBER.FOR) is used to calculate the sine and cosine inte-

grals.

The change in directivity due to errors is calculated

by the routine EXPDIR.FOR. EXPDIR.FOR employs equation

(3.58), where the change in directivity is defined as:

AD = [1 + (/P)]-1 (4.25)

All directivities returned to PARRAY.FOR are in decibels.

Part I= Outut Routine and Recalculation. All the

data collected up to this point is sent to OUTPUT.FOR which

in turn generates a file called OUTPUT.DAT. OUTPUT.DAT

displays all the array specifications including the element

weights. It also displays the beamwidths for the design and

expected arrays at the upper, center, and lower frequencies
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of the band, and the directivities of the design array and

change in directivity for the expected array at the upper,

center, and lower frequencies of the band. A sample of the

output file is shown in Figure 18.

Besides the array specifications and standards, the

program prints out the numerical error data from the beam-

width calculations. The "D" preceding the "FLAG" and "ITRM"

terms indicates the design array. The "E" indicates the

expected array. The number immediately following "FLAG" or

"ITRM" indicates the frequency; 1 - center 2 - upper,

3 - lower. The number in parentheses for the "FLAG" terms

indicates the following:

(1) - Beamwidth in the eh plane

(2) - Beamwidth in th'e *h plane

(3) - No pattern flag

What this means is, if "DFLAG2(1)=l" there is a 3-dB beam-

width in the eh plane at the upper frequency for the design

array. If "DFLAG2(1)=2" there is not a 3-dB beamwidth in

the 9h plane. "DFLAG2(2)" has the same connotation as

"DFLAG2(l)" except it is for th" If "DFLAG2(3)=l", it means

that there is a valid pattern to consider at the scan angles

00,00. Conversely, if "DFLAG2(3)=2", it means, for whatever

reason, the magnitude of the pattern factor in the direction

90, 00 is zero. The same logic applies to the "EFLAG" terms.

Before we discuss what the number in parentheses means

for the "ITRM" terms, we need to discuss what is occurring
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PARRAY SPECIFICATIONS ANO DATA

FREQUENCY OR WAVELENGTH SPECIFICATION3:

BANDWIDTH FREQUENCY WAVELENGTH
UPPER: 29980.0000000 MHz 1.0000000 cms

CENTER: 29980.0000000 MHz 1.0000000 cms
LOWER: 29980.0000000 MHz 1.0000000 cms

ARRAY SPECIFICATIONS:
ANAY ALONG X-AXiS ARRAY ALONG Y-AAIS

NUMBEq OF ELEMENTS: 10 ELEMENTS 10 ELEMENTS
ELEMENT SPACING: .5000000 cms .5000000 cms

SYNTHESIS: CHEBYSHEV CHEBYSHEV
DESIGN

SIDE LOBE LEVEL: -30.0000000 d8

DESIGN

SIDE LOBE LEVEL: -30.0000000 dB

WE!GHTS: X-DIRECTION Y-DIRECTION

ELEMENT 1: .2575323 .2575323
ELEMENT 2: .4299509 .4299509
ELEMENT 3: .6692189 .6692189
ELEMENT 4: .8780469 .8780469
ELEMENT 5: 1.0000000 1.0000000
ELEMENT 6: 1.0000000 1.0000000
ELEMENT 7: .8780469 .8780469

ELEMENT 8: .6692189 .6692189
ELEMENT 9: .4299509 .42.9!09
ELEMENT 10: .2575323 .2575323

ELEMENT DATA:
TYPE: ISOTROPIC ELEMENTS

ARRAY TOLERANCE DATA:

ELEMENT RMS DRIVE AMPLITUDE ERROR: .0020000 UNITS

ELEMENT RMS PHASE ERROR: 10.0000000 degree(s)
RMS ERROR IN X-PLACEMENT: .0020000 cms

RMS ERROR IN Y-PLACEMENT: .0020000 cms
RMS ERROR IN Z-PLACEMENT: .0020000 cms
RMS ELEMENT PATTERN ERROR: -100.0000000 dB

FRACTION OF ELEMENTS OPERATING: 1.0000000
SCAN ANGLES:
THETAO = .0000000 degrees PHIO = .0000000 degrees

BEAMWIDTHS FOR DESIGN ARRAY AT GIVEN SCAN ANGLES:
THETA sub H PSI sub H

UPPER FREQUENCY: 13.0375700 degrees 13.0375700 degrees

CENTER FREQUENCY: 13.0375700 degrees 13.0375700 degrees
LOWER FREQUENCY: 13.0375700 degrees 13.0375700 degrees

BEAMWIDTHS FOR EXPECTED ARRAY AT GIVEN SCAN ANGLES:

THETA sub H PSI sub H
UPPER FREQUENCY: 13.0414800 degrees 13.0414800 degrees
CENTER FREQUENCY: 13.0414800 degrees 13.0414800 degrees
LOWER FREQUENCY: 13.0414800 degrees 13.0414800 degrees

DIRECTIVITIES FOR DESIGN AND EXPECTED ARRAY AT GIVEN SCAN ANGLES:

DESIGN ARRAY CHANGE DUE TO ERRORS

UPPER FREQUENCY: 23.5317800 dB -.1329967 de
CENTER FREQUENCY: 23.5317800 di -.1329967 di
LOWER FREQUENCY: 23.5317800 dB -.1329967 di

Figure 18. Sample output from PARRAY.EXE.
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in the Regula Falsi root finding algorithms belonging to

DBWDTH.FOR and EBWDTH.FOR. As mentioned in Part 3,

DBWDTH.FOR passes two angles to the routine REGFAL.FOR to

find the angle at which the pattern factor equals ( )'? to

within a given tolerance. The REGFAL.FOR routine searches

for this point until one of two things occur. The process

terminates when either the maximum number of iterations is

exceeded or when the desired tolerance is achieved. The

maximum number of iterations for the REGFAL.FOR routine is

set to 10. The tolerance is set to 1.0(107). This toler-

ance was selected since it was the maximum accuracy of the

FORTRAN compiler used to compile the program. The maximum

number of iterations was selected as a compromise between

time and accuracy, such that, most often the tolerance will

be achieved before the maximum number of iterations is

exceeded. The ERGFAL.FOR routine is trying to locate the

angle where the expected pattern factor equals ( )A. In

this routine the tolerance is again set at 1.0(10' ) and the

maximum number of iterations is set tu 10. During the

execution of DBWDTH.FOR and EBWDTH.FOR , four calls are made

to REGFAL.FOR and ERGFAL.FOR, respectively. The number in

parentheses indicates the side (left or right) of the beam

and which plane it is considering, R. or Th, as described
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below:

(1) - theta left

(2) - theta right

(3) - psi left

(4) - psi right

Finally, if any "ITRM" term equals one, it means the toler-

ance was achieved. If "ITRM" equals two, it means the

maximum number of iterations was exceeded before the toler-

ance was achieved.

The "Numerical Error Data From Beamwidths Calculations"

section is set up so that with a quick glance one can tell

if there is a problem. All "ones" indicates everything is

satisfactory. If there is a "two" it means something hap-

pened and should be investigated further. There is a chance

a zero (0) could occur in the "ITRM" terms. This would

indicate that a particular REGFAL.FOR call was not made

because the angle at which the pattern value equals ( )' or

- was hit precisely and the ensuing call to the REGFAL.FOR

routine wasn't needed.

Once control is returned to PARRAY.FOR, PARRAY.FOR

prompts he user for instructions on how to proceed. The

user may choose to terminate the program or recalcuiate the

beamwidths and directivities for new scan angles. If the

user wants to recalculate the data at new scan angles, the

PARRAY.FOR returns to Part 3 where the user enters new scan

angles. When OUTPUT.FOR is again reached, just the new scan

89



angles, data, and numerical error data is printed, not all

the array specifications since they did not change. Then

the process repeats again unless a termination order is

given.

Summary

The information presented in this chapter detailed the

specific development, of the program. The program is brclen

down into five parts. Part 1 is the data entry section

where the array specifications, element data, and error data

are entered and the element weights are calculated. Part 2

is wnere the pattern data for the design and expected arrays

are calculated. Part 3 contains the beamwidth calculation

routines. Here, we showed how a coordinate translation was

employed so the beamwidths of the design and expected arrays

can be calculated for any general pattern shape. Part 4

contained the directivity calculation routines. The speci-

fic equations used to calculate the directivity were de-

fined. We noted that the expressions were valid for certain

conditions, but, none of which will affect the directivity

calculation unless the element pattern is not broad. Part 5

contained the data output routine and the continue/terminate

section of the program. Each item printed in the 0UTZUT.DAT

file was explained in detail. Finally, the user is given

the opportunity to recalculate the beamwidths and directivi-

ties for new scan angles.

In Chapter V, the program is validated against known
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results. First, the element weights calculated by the

program for different excitation schemes are validated by

generating their appropriate plots and comparing to what

sho.-A be seen and against patterns in the literature.

After confidence is gained that the excitation, array pat-

tern, and element pattern routines are functioning properly,

the beamwidth and directivity routines are validated against

computed results found in the literature. Lastly, the error

routines for the expected array will be validated against

trends and assessments noted in the literature and specific

problems, where possible.
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V. Program Validation

The purpose of this chapter is to validate the code

comprising the program PARRAY.FOR. In the first part of the

chapter, the routines for generating the element weights and

the data for the pattern plots for both the design and

expected arrays are validated. If the element weights are

calculated properly and the pattern factor routines function

properly, then the program should generate the data points

for the desired pattern. For example, if a Dolph-Chebyshev

pattern with -30 dB side lobe suppression is desired then

the element weights calculated by CHEBY.FOR together with

the pattern routines should generate the data points neces-

sary to give a pattern with one main lobe and equal side

lobes at -30 dB. In the second part of the chapter, the

routines that calculate the beamwidths and directivities of

the array are validated against known results found in the

lierature. The remainder of the chapter is devoted to

validating the error routines against trends identified

during the literature review.

Validation of the Excitation and Pattern Routines

In this section the element weights produced by each of

the routines CHEBY.FOR, TAYLOR.FOR, BINOML.FOR, UNIFRM.FOR,

and USRDEF.FOR are validated by comparing calculated weights

to numerical examples in the literature. At the same time,

the pattern routines are validated by creating pattern plots
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of the data output by these routines and verifying the -lot

matches the desired pattern or examples in the literature.

Let us asme we desire to design a planar array with

10 elements in the x-direction and 15 elements in the y-

direction with A/2 interelement spacing and a -2E dB ide

lobe level in the x-direction and a -36 dB side lobe level

in th: y-direction. The element weights calculated by

CHEBY.FOR for the x- and y-dirtztions are shown in Table I.

The weights in the x-direction agree with a similar examples

in Pozar (19:7$) and Balanis (4:251). The pattern for the

weights in the x-direction is shown in Figure 19. The

pattern for the weights in the y-direction is snown in

Figure 20. The pattern in Figure 19 is identical to the

pattern in Pozar (18:74). For the y-direction, the tasired

nattern is to have a -36 dB side lobe level. The pattern in

Figure 18 Joes show even side lobes at -36 dB, characteris-

tic of a Dolph-Chebyshev array.

To validate the TAYLOR.FOR routine, let us assume we

desire a planar array with 19 elements in the x-direction

with 0.7 A spacing, -20 dB side lobe suppression with i=6

using the null matching weights. In the y-direction we want

19 elements with 0.7 A spacing, -20 dB side lobe suppression

with n=6 using the aperture sampling weights. The element

weights for this case are shown in Table II. The null

matching weights in the x-direction agree with similar cases

in Pozar (19:70) and Elliott (10:176). The aperture
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Table I. Normalized currents for patterns of Figures 19-20

In for Fig. 27 I for Fig. 18
Element X-direction Y-direction

1 .36107-6 .1597263
2 .4894356 .2471115
3 .7105761 .3973025
4 .8950094 .5654510
5 1.0000000 .7314007
6 1.0000000 .8722100
7 .8950094 .9667108
8 .7105761 1.0000000
9 .4894356 .9667108

10 .3610786 .8722100
11 7314007
12 .5654510
13 .3973025
14 .2471115
15 .1597263

Table II. Normalized currents for patterns of Figures 21-22

In for Fig. 19 In for Fig. 20
X-direction Y-direction

Element Null Matching Aperture Sampling

1 .7493064 .7432176
2 .6229094 .6262966
3 .5629416 .5699893
4 .6488633 .6502087
5 .7690658 .7666988
6 .8431128 .8427454
7 .9039928 .9043074
8 .9661377 .9646410
9 .9966137 .9954504

10 1.0000000 1.0000000
11 .9965672 .9954504
12 .9660780 .9646410
13 .9039486 .9043074
14 .8430912 .8427454
15 .7690604 .7666988
16 .6488639 .6502087
17 .5629424 .5699893
18 .6229098 .6262966
19 .7493064 .7432176
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Figure 19. Radiation pattern for a 10 element, Dolph-Cheby-
shev synthesized array with A spacing showing a -26 dB side
lobe level
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Figure 20. Radiation pattern for a 15 element, Dolph-Cheb-
yshev synthesized array with A interelement spacing show-
ing a -36 dB side lobe level
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sampling weights in the y-direction agree with Pozar

(19:79). The pattern for the null matching weights is shown

in Figure 21. Notice how the six inner most side lobes in

the pattern are very close to -20 dB as we desired. The

pattern for the aperture sampling weights is shown in Figure

22. Again, the six inner most side lobes are at -20 dB as

expected.

Before we leave the Taylor synthesis, let us test the

routine for two new values of h. Let us assume we have 21

elements in the x-direction and 22 elements in the y-direc-

tion with A/2 interelement spacing. We want a -30 dB side

lobe suppression in the x-direction and a -35 dB side lobe

suppression in the y-direction. We will let h = 7 in the x-

direction and fi = 8 in the y-direction and we will use the

null matching weights in both directions. The element

weights produced by TAYLOR.FOR are shown in Table III. The

pattern for the x-direction is shown in Figure 23. The

pattern for the y-direction is shown in Figure 24. Looking

at the pattern in Figure 23, we can see that the 7 inner-

most side lobes are at -30 dB as desired. In Figure 24, the

8 inner-most side lobes are at -35 dB as desired.

To test the binomial current distribution routine

(BINOML.FOR), we will assume a planar array with 10 elements

in the x-direction with A/4 spacing and 10 elements in the

y-direction with A/2 spacing. The weights for the array are

shown in Table IV. The pattern for the weights in the
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Figure 21. Radiation pattern for a 19 element, Taylor

synthesized (fi=6) array with 0.7A interelement spacing and a
-20 dB side lobe level using null matching weights
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Figure 22. Radiation pattern for a 19 element, Taylor
synthesized (i=6) array with 0.7A interelement spacing and a
-20 dB side lobe level using aperture sampling weights
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Table III. Normalized currents for patterns of Figures 23-
24

In for Fig. 21 In for Fig. 22
Element X-direction Y-direction

1 .2816017 .1826574
2 .2983098 .2137403
3 .3638166 .2904074
4 .4736608 .3979462
5 .5889375 .5102512
6 .6939946 .6231356
7 .7938421 .7342620
8 .8805723 .8325624
9 .9439505 .9128824

10 .9847533 .9708424
11 1.0000000 1.0000000
12 .9848089 1.0000010
13 .9440464 .9708449
14 .8806777 .9128821
15 .7939240 .8325511
16 .6940391 .7342379
17 .5889544 .6231086
18 .4736658 .5102325
19 .3638179 .3979382
20 .2983101 .2904055
21 .2816017 .2137402
22 .1826574

Table IV. Normalized currents for patterns of Figures 25-
26

Im for Fig. 21 In for Fig. 22
ELEMENT X-direction Y-direction

1 .0079365 .0079365
2 .0714286 .0714286
3 .2857143 .2857143
4 .6666667 .6666667
5 1.0000000 1.0000000
6 1.0000000 1.0000000
7 .6666667 .6666667
8 .2857143 .2857143
9 .0714286 .0714286

10 .0079365 .0079365
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Figure 23. Radiation pattern for a 21 element, Taylor syn-
thesized (h~=7) array with x interelement spacing and a -30
dB side lobe level
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Figure 24. Radiation pattern for a 22 element, Taylor
synthesized (fi=8) array with )' interelement spacing and a
-35 dB side lobe level
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x-direction is shown in Figure 25. The pattern for the

weights in the y-direction is shown in Figure 26. Both

patterns do not exhibit any side lobes as stated in Chapter

2, even though, the pattern in Figure 25 is very broad.

Both patterns agree with the ones found in Balanis (4:245).

Next, the pattern functions are run for a uniform

current distribution. For this case all element weights are

set to one. We can show several items characteristic of a

uniform array. First, as M (the number of elements in one

direction) increases, the main lobe narrows. Second, there

are M-2 minor lobes and one main lobe in the region 0° os9 °

for 0=180 ° and 0°50 90 ° for 0=0 ° . Finally, the first minor

side lobe approaches -13.3 dB as M increases. We will

assume our planar array has 10 elements in the x-direction

and 16 elements in the y-direction. The array has A/2

spacing in both directions. The pattern for the xz-plane is

shown in Figure 27. In Figure 27, there would be 8 minor

lobes and one main lobe as expected if the other half of the

pattern were included. However, because the pattern is

symmetric the other half of the pattern was not plotted. We

can also see that the first minor lobe is at approximately

-13.3 dB. The pattern for the yz-plane is shown in Figure

28. Here we see 7 minor lobes which means there are actual-

lv 14 if the entire pattern were plotted. The first minor

lobe in Figure 28 is at approximately -13.3 dB. Comparing
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Figure 25. Radiation pattern for a 10 element array with a
binomial current distribution and hA interelement spacing
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Figure 26. Radiation pattern for a 10 element array with a
binomial current distribution and A interelement spacing
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Pigure 27. Radiation pattern for a 10 element, uniformly
excited array with interelement spacing
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Figure 28. Radiation pattern for a 16 element, uniformly
exzited array with X interelement spacing
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Figures 27 and 28 we can see that the main lobe in Figure 28

is narrower than the main lobe in Figure 27 as expected.

As a last test of the pattern factor routines we will

use an inverse triangular and triangular current distribu-

tion in the x- and y-directions, respectively. The element

weights for these current distributions will be input by the

user defined routine. We will assume 5 elements in each

direction with A/2 spacing so that we can compare the pat-

tern plots with those in Stutzman and Thiele (23:148-152).

The element weights for each direction are shown in Table V.

Figure 29 shows the pattern due to the elements in the x-

direction. Figure 30 shows the pattern due to the elements

in the y-direction. The pattern in Figure 29 shows the main

lobe at broadside and the two side lobes with the first lobe

at a level of approximately -6.3 dB, the same as (23:152).

The pattern in Figure 30 shows thc main lobe at broadside

and the side lobe at 90" with a level of approximately -

19.1 dB, the same as in Stutzman and Thiele (23:148).

Table V. Normalized currents for patterns in Figures 29-30

I, for Fig. 27 In for Fig. 28
Element X-direction Y-direction

1 1.0000000 .3333333
2 .6666667 .6666667
3 .3333333 1.0000000
4 .6666667 .6666667
5 1.0000000 .3333333

103



0-

-10

-20

-30

-40

-50

0 20 40 50

THETA C 0EGREES)

Figure 29. Radiation pattern for a 5 element array with an
inverse triangular current distribution and ,A spacing
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Figure 30. Radiation pattern for a 5 element array with a
triangular current distribution with A spacing
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Up to this point, we have considered only isotropic

elements, mainly because most of the examples in the litera-

ture consider isotropic elements. Now, let us look at the

element patterns of a half and full wavelength dipoles to

ensure the element factor routines are producing the proper

values. Then, we will plot the pattern of a planar array of

half and full wavelength dipoles to look at the effects of

the dipole on the overall radiation pattern of the array.

PARRAY.EXE was used to generate the plots for a A/2 and a

dipole and are shown in Figures 31 and 32, respectively.

The program calculated the beamwidth for the A/2 dipole as

78' and for the A dipole as 47.80 in agreement with Balanis

(4:122). The A/2 dipole pattern is overlaid against a -25

dB Dolph-Chebyshev synthesized lOxlO array, with A/2 inter-

element spacing, pattern in Figure 33. The plots in Figure

33 depict the respective patterns in the xz-plane. As we

can see from Figure 33, the dipole pattern would have negli-

gible effect on the overall pattern. The pattern for the

same lxlO array, but, this time with x-aligned, A/2 dipoles

as the elements, is shown in Figure 34. Figure 34 shows

that there is very little distortion in the pattern with

only the outside side lobes slowly tapering off due to

dipole pattern. Figure 35 shows the overlay of the same

array as before, but, this time with a 1A dipole pattern

overlaying the array pattern. Obviously, the 1A dipole will

effect the pattern more than the A/2 dipole. Indeed, in
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Figure 31. Radiation pattern for a half-wavelength dipole
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Figure 32. Radiation pattern for a full wavelength dipole
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Figure 33. Radiation pattern overlay of a A dipole and a 10'
element, Dolph-Chebyshev synthesized array with '-.x inter-
element spacing and -25 dB side lobe level
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Figure 34. XZ-plane radiation pattern for a 10 element,
-25 dB Dolph-Chebyshev synthesized array with x spacing and
x-aligned A dipoles as elements
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Figure 36 we can see the effect of an x-aligned, 1A dipole

as an element in the array. The outside side lobes are

significantly reduced by the dipole pattern. Now let us see

what happens when we scan the main beam off broadside with

A/2 and A dipoles in the array.

Figure 37 shows an overlay of the radiation patterns of

a 10xlO, -25 dB Dolph-Chebyshev synthesized array, with \/2

interelement spacing, scanned at 30 ° from broadside

(60=30°,<O=0 °) and that of a A/2 dipole. The "minus" theta

on the scale signifies that 0=180 ° for that part of the x-

axis. As we can see from Figure 37, the dipole pattern is

beginning to impact the array pattern. Figure 38 shows the

array's radiation pattern with the X/2 dipole as an element.

Indeed, the main beam is becoming broader as the array is

scanned further from broadside.

Figure 39 shows the overlay of the radiation patterns

for the same 1OxlO array as before, scanned at 30 ° from

broadside, with that of a 1A dipole. The 1A dipole signifi-

cantly impacts the main beam. In Figure 40, we see the

radiation pattern of the array with the 1A dipole as an

element. The main beam for Figure 40 is significantly

broader than the main beam of the array in Figure 39.

The purpose of the preceding paragraphs was to show

that the directivity expression used in the program may not

yield accurate results for an array of x- or y-aligned

dipoles for the main beam of the array scanned much beyond
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Figure 35. Overlay of radiation patterns for a 1A dipole and
a 10 element, -25 dB Dolph-Chebyshev synthesized array with
', interelement spacing
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Figure 36. XZ-plane radiation pattern of a 10 element, -25
dB Dolph-Chebyshev synthesized array with interelement
spacing and x-aligned IA dipoles as elements
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Figure 37. Radiation patterns for a X dipole and a 10
element, Dolph-Chebyshev synthesized array with kA interele-
ment spacing and a -25 dB design side lobe level scanned at
30' from broadside
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Figure 38. Radiation pattern of a 10 element, Dolph-Cheby-
shev synthesized array with A interelement spacing showing
a -25 dB side lobe level scanned at 30" off broadside with A
dipoles as elements
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Figure 39. Radiation patterns for a 1A dipole and a 10
element, Dolph-Chebyshev synthesized array with A interele-
ment spacing showing a -25 dB design side lobe level,
scanned at 30" off broadside
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Figure 40. Radiation pattern for a 10 element, Dolph-Cheby-
shev synthesized array with kA interelement spacing and a
-25 dB design side lobe level, and with 1A dipoles as ele-
ments
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300 from broadside or for an array of z-aligned dipoles for

the main beam scanned much beyond 30 0 from endfire. If the

beam is scanned past 30° from broadside with x- or y-aligned

dipoles, another method of calculating the directivity is to

use (10:206):

DPA = 3 2 ,4 0 0 /Bareat (5.1)

where Bareal is the areal beamwidth given by:

Bareat = eh~ih (5.2)

where eh and *h are in degrees. eh and *h are already com-

puted by the program and can be used to calculate DPA as

will be seen shortly. The expression for the directivity in

(5.1) is valid for planar arrays and most practical aperture

distributions (10:206). If a linear array is being ana-

lyzed, then one could use the expression (10:157):

DLA = 101. 5 °/eh (5.3)

where eh is the broadside half power beamwidth of a linear

array and is expressed in degrees. Recall, in this program

eh is associated with the x-axis and *h is associated with

the y-axis for a broadside array. Therefore, when analyzing

an array laying along the y-axis one would use qh in equa-

tion (5.3). Equations (5.1) and (5.3) provide a quick

comparison with the other directivity values calculated in

the program.

Now that we are assured that the excitation routines

and the pattern factor routines are working properly, we can

validate the beamwidth and directivity calculation routines.
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To do this the program will be tested against several linear

array and two planar array examples found in the literature.

Validation of the Beamwidth and Directivity Calculation

Routines

The first part of this section deals with validating

the beamwidth calculation routines in the program. First

the program is validated against several linear array ex-

amples and then two planar array examples found in the

literature. The last part of this section validates the

directivity calculation routines against the same cases as

for the beamwidth validation.

Beamwidth Validation. Eight different linear array

cases found in the literature are used to validate the

beamwidth routines. The eight linear cases are:

Case 1: Uniform current distribution, 5 elements, X/2
spacing, 60=0", isotropic elements (23:149).

Case 2: Triangular current distribution, 5 elements,
A/2 spacing, 80=o °, isotropic elements
(23:149).

Case 3: Inverse triangular current distribution, 5
elements, A/2, #,=09, isotropic elements
(23:149).

Case 4: Binomial current distribution, 5 elements, A/2
spacing, e0=0°, isotropic elements (23:149).

Case 5: Dolph-Chebyshev synthesis, -20 dB design side
lobe level, 5 elements, A/2 spacing, 00=0.,
isotropic elements (23:150).

Case 6: Dolph-Chebyshev synthesis, -30 dB design side
lobe level, 5 elements, A/2, 90=O*, isotropic
elements (23:150).
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Case 7: Dolph-Chebyshev synthesis, -26 dB design side
lobe level, 10 elements, A/2, 00=0 ° , isotropic
elements (4:257).

Case 8: Taylor f-parameter synthesis (fn=6), -20 dB
design side lobe level, null matching weights,
19 elements, 0.7A spacing, 00=0 ° , isotropic
elements (19:79).

The beamwidths found in the literature and as calculated by

the program are presented in Table VI for comparison.

Comparing the beamwidths, we can see excellent agreement,

except in Case 7. In Case 7, the beamwidths calculated by

Balanis are calculated using certain approximations which

may not be as accurate as the program.

Now, let us look at two cases for planar arrays and

compare results. The two planar array cases are:

Case 9: A 10xlO array, Dolph-Chebyshev synthesis in
both directions, -26 dB design side lobe
level, A/2 spacing both directions, 00=30 ° ,
p=45 ° , isotropic elements (4:273).

Case 10: A 20x36 array, Dolph-Chebyshev synthesis both
directions, -30 dB design side lobe level,
0.58A spacing in the x-direction, 0.64A spac-
ing in the y-direction, 00=0*, 00=0 ° , isotro-
pic elements (10:208-210).

The beamwidths for the planar array cases found in the

literature and as calculated by the program are presented in

Table VII for comparison. Again, there is good agreement

between program results and the examples in the literature.

Any discrepancies can be attributed to approximations used

by the various authors.

Directivity Validation. The same ten cases used to

validate the beamwidth calculations are used to validate the
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directivity calculation routines. The directivities found

in the literature and those calculated by the program are

presented in Table VIII for comparison. Again we see excel-

lent agreement with any discrepancies attributed to accuracy

of element weights and approximations used by the various

authors.

Error Validation

In this section, we will validate the error routines by

confirming various trends in tolerance analysis noted in the

literature. Unfortunately, specific examples for either the

linear array or the planar array are not presented in the

literature. If the following trends are confirmed, then, we

will have reasonable confidence that the error routines are

performing properly.

Before the trends are confirmed, we will run the pro-

gram for a no-error situation to ensure the patterns and

beamwidths of the no-error error routines match those of the

design routines and to show that the change in directivity

is 0 dB. We will rerun Case 7, page 112, to ensure the

Deamwidths and patterns of the no-error error routines match

those of the design values. Table IX shows excerpts from

the output file. We can see that the design and expected

beamwidths match precisely and that the change in directi-

vity is 0 dB. Figure 41 shows the no-error expected pattern

and it matches Figure 19 precisely. Therefore, any differ-

ences we see between the design and expected values and the
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Table VI. Linear array beamwidth comparisons

Case Literature Program

1 20.8 °  20.7765 °

2 26.0 °  25.95161'
3 18.20 18.23554 °

4 30.3 °  30.282620
5 23.6* 23.70704 °

6 26.4 °  26.40292 °

7 10.17' 12.34591'
8 4.1* 4.128539 °

Table VII. Planar array beamwidth comparisons

Literature Proqram
Case eh  Th 9h 4h

9 12.67 °  10.97 °  14.60806* 12.60226 °

10 5.00 2.5* 5.4541 °  2.69731 °

Table VIII. Linear and planar array directivity comparisons

Case Literature Program

1 6.9897 dB 6.9897 dB
2 6.2941 dB 6.2973 dB
3 6.5128 dB 6.5142 dB
4 5.6348 dB 5.6314 dB
5 6.7025 dB 6.7078 dB
6 6.2531 dB 6.2590 dB
7 9.63 dB 9.5074 dB
8 13.90 dB 14.0468 dB
9 23.60 dB 23.3615 dB

10 34.1 dB 34.0463 dB

116



Table IX. Design versus no-error expected parameters

ARRAY TOLERANCE DATA:

ELEMENT RMS DRIVE AMPLITUDE ERROR: .0000000 UNITS

ELEMENT RMS PHASE ERROR: .0000000 degree(s)
RMS ERROR IN X-PLACEMENT: .0000000 cms

RMS ERROR IN Y-PLACEMENT: .0000000 cms
RMS ERROR IN Z-PLACEMENT: .0000000 cms

RMS ELEMENT PATTERN ERROR: -100.0000000 dB

FRACTION OF ELEMENTS OPERATING: 1.0000000

SCAN ANGLES:
THETAO = .0000000 degrees PHIO .0000000 degrees

BEAMWIDTHS FOR DESIGN ARRAY AT GIVEN SCAN ANGLES:
THETA sub H PSI sub H

UPPER FREQUENCY: 11.7263900 degrees 7.6491070 degrees
CENTER FREQUENCY: 12.3459100 degrees 8.0523400 degrees

LOWER FREQUENCY: 12.9657800 degrees 8.4556710 degrees

BEAMWIDTHS FOR EXPECTED ARRAY AT GIVEN SCAN ANGLES:
THETA sub H PSI sub H

UPPER FREQUENCY: 11.7263900 degrees 7.6491070 degrees
CENTER FREQUENCY: 12.3459100 degrees 8.0523400 degrees

LOWER FREQUENCY: 12.9657800 degrees 8.4556710 degrees

DIRECTIVITIES FOR DESIGN AND EXPECTED ARRAY AT GIVEN SCAN ANGLES:

DESIGN ARRAY CHANGE DUE TO ERRORS

UPPER FREQUENCY: 26.2509700 dB .0000000 dB
CENTER FREQUENCY: 25.8114200 d9 .0000000 dB

LOWER FREQUENCY: 25.3932600 dB .0000000 d8
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Figure 41. No-error expected radiation pattern for a 10x15
element, Dolph-Chebyshev synthesized array with A/2 spacing
and a -26 dB design side lobe level in both directions
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patterns are due to errors in the design and not numerical

errors caused by the program.

Five different trends were identified during the liter-

ature review and will be used to validate the error rou-

tines. The five trends are:

Trend 1: The rise in side lobe level due to random
errors, for a given set of tolerances and
number of elements, increases as the side
lobe level is further suppressed (3:240;
11:120; 17:98).

Trend 2: For a given set of tolerances, pattern dete-
rioration is found to decrease as the array
is enlarged (11:120; 20:177).

Trend 3: For a given set of tolerances, pattern dete-
rioration is less for a planar array of size
L2 than it is for a linear array of length L
(11:120).

Trend 4: The side lobe level increase due to random
errors does not depend in scan angle
(11:120).

Trend 5: Translational errors in the positions of the
elements are found to cause the dominant
effect while amplitude errors in the radia-
ting currents are of secondary importance
(11:120).

When Elliott showed the fifth trend, he did not consider the

fraction of elements operating. Therefore, when we confirm

the fifth trend, we will set the fraction of elements opera-

ting to one and then proceed. The fraction of elements

operating will overshadow any other errors in the design as

we will show in confirming the fifth trend.

All five trends will be confirmed by using Dolph-

Chebyshev synthesized arrays with isotropic elements.

Dolph-Chebyshev patterns provide a good pattern for analyz-
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ing these trends. Also, isotropic elements are used since

dipoles tend to distort the pattern and what we really want

to see are pattern distortions due to errors. Since we will

be using isotropic elements, the RMS error in the element

pattern will be set to -100 dB so as not to have any effect

on the calculations.

To confirm the first trend, let us consider a 10xlO

element planar array, with a Dolph-Chebyshev synthesized

current distribution in both directions and A/2 element

spacing. Four runs of the program were made with a decrease

of 5 dB in the side lobe level for each run beginning with a

-25 dB design side lobe level. The following error data was

used for each run:

RMS amplitude error: 0.002 units
RMS phase error: 10.0 degrees
RMS error in x-placement: 0.002 cms
RMS error in y-placement: 0.002 cms
RMS error in z-placement: 0.002 cms
RMS error in element pattern: -100.0 dB
Fraction of elements operating: 1.0

The plots of the expected radiation pattern overlaid on the

design radiation pattern for each run are shown in Figures

42-45. Comparing these figures, we can see the side lobe

level of the error pattern rising the further the design

side lobe level is suppressed confirming the first trend.

This trend can be explained by comparing the element weights

for each run. As the side lobe level is further reduced,

the end element weights begin to increase causing an abrupt

change in the aperture distribution at the ends of the
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Figure 42. Expected and design radiation patterns (xz-plane)'
for a l0xlQ element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -25 dB design side lobe level
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Figure 43. Expected and design radiation patterns (xz-plane)
for a l0xlO element, Dolph-Chebyshav synthesized array with-
A/2 spacing and a -30 dB design side lobe level
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Figure 44. Expected and design radiation patterns (xz-plane)
for a lOxlO element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -35 dB design side lobe level
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Figure 45. Expected and design radiation patterns (xz-plane)
for a lOxlO element, Dolph-Chebyshev synthesized array wi-h
A/2 spacing and a -40 dB design side lobe level
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array. This abrupt change at the ends of the array coupled

with the errors in the design cause the side lobe level to

increase.

The second trend is confirmed by considering four

different sizes of planar arrays. Each array will have a

Dolph-Chebyshev synthesized current distribution with a

design side lobe level of -30 dB and the same errors presen-

ted earlier. Figures 46-49 show the expected radiation

pattern overlaid on the design radiation pattern for a

1OxlO, 12x12, 15x15, and 20x20 element planar array, respec-

tively. By comparing these figures, we see the pattern

distortion decreasing as the size of the array increases

confirming the second trend. The reason this trend is

occurring is because as the array becomes larger (more

elements) the sum of all the errors tends to the mean of the

design thus reducing the overall effects of the errors.

For the third trend, we will consider a 20x20 element

planar array and a 20 element linear array. Each array will

have a Dolph-Chebyshev synthesized current distribution

giving a -30 dB design side lobe level, A/. element spacing,

and the same set of tolerances used earlier. The expected

radiation pattern overlaid on the design radiation pattern

is shown in Figure 50 for the planar array. The expected

radiation pattern overlaid on the design radiation pattern

for the linear array is shown in Figure 51. Comparing

Figures 50 and 51 we can see that the expected pattern in
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Figure 46. Expected and design radiation patterns (xz-plane)
for a 10xlO element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level
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Figure 47. Expected and design radiation patterns (xz-plane)
for a 12x12 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level
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Figure 48. Expected and design radiation patterns (xz-plane)
for a 15x15 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level
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Figure 49. Expected and design radiation patterns (xz-plane)
for a 20x20 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level
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Figure 50. Expected and design radiation patterns (xz-plane)
for a 20x20 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level
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Figure 51. Expected and design radiation patterns (xz-plane)
for a 20 element, Dolph-Chebyshev synthesized array with )/2
spacing and a -30 dB design side lobe level
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Figure 50 is considerably less distorted than the expected

pattern in Figure 51. Again, the reason this trend occurs

can be attributed to the increased number of elements and

the fact that the errors tend to their mean value as the

population (of elements) grows.

The fourth trend is confirmed by considering five

different scan angles in the same array. The scan angle is

varied in 10° increments beginning at 0* and scanning

through 40° for a 15x15 element planar array with a Dolph-

Chebyshev synthesized current distribution giving a -30 dB

design side lobe level, with A/2 element spacing. The case

for the array scanned at broadside (0°) is shown in Figure

48. The cases for the array scanned at 10°, 20*, 30°, and

40° are shown in Figures 52-55, respectively. Each figure

shows the expected radiation pattern overlaid on the design

radiation pattern. By comparing all five figures, we can

see that the side lobe level due to errors remains constant

as the array is scanned through 40° confirming this trend.

This trend is best explained by considering equation (3.39)

and the same reasoning used in deriving the change in direc-

tivity due to errors. In Chapter III we showed that e2(0,0)

was only weakly angle dependent and, this being the case,

the second term in equation (3.39) becomes that of an omni-

directional type pattern. This adds a constant term to the

overall pattern that does not increase or decrease with scan

angle.
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Figure 52. Expected and de : n radiation patterns (xz-plane
for a 15x15 element, Dc'oh- :l ebys;hev synthesized array -
A/2 spacing and a -30 dB -.1gn side lobe level scanned at
from broadside
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Figure 53. Expected and design radiation patterns (xz-plane)
for a 15x15 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level scanned at 20'
from broadside
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Figure 54. Expected and design radiation patterns (xz-plane)
for a 15x15 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level scanned at 30'
from broadside
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Figure 55. Expected and design radiation patterns (xz-plane)
for a 15x15 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level scanned at 40'
from broadside
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In order to validate the fifth trend an extensive

sensitivity analysis would ha,,e to be undertaken which is

not within the purview of this paper. Instpad, we will take

a qualitative look at which errors are the most domindnt by

examining equation (3.39), and by looking at a pattern with

Ly ,ic~l a~rs nd rz~moving them ona-at-a-timc until th1c

design pattern is obtained.

For this analysis, the absolute value of 1U(9,0) j2 is

immaterial so we can divide equation (3.39) by PITAP(of)

and look at the term preceding the double summation of the

second term in equation (3.39). Calling this term the error

term (E.T.) we have:

E.T. = 1 + A( a I PYAP - 1 (5.4)

If the variances in the term *AP(O,0) as given by equation

(3.37) are roughly equal, we can rewrite equation (5.4) as:

E.T. = [[1 + a Aexp( )exp(k2-x)/P] - 1 (5.5)

In equation (5.5) we see that the error term is inversely

proportional to the fraction of elements operating. P

clearly has the potential for causing the dominant effect if

element reliability is not very high. Assuming for now that

P is approximately one the next dominant effect will come

from the translational errors in the positions of the ele-

ments. Since the variance in the element position is multi-

plied by the factor k2 in the exponential, it clearly has

the leading effect on the overall pattern. It is purely
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conjecture as to which of the remaining two factors, var-

iance in the phase error or the amplitude error, would be

the more dominant of the two. Elliott claims that errors in

the radiating currents are of secondary importance

(11:120).

To illustrate which errors are most dominant and the

least dominant, let us consider a case with realistic er-

rors. Consider a 1OxlO planar array with a Dolph-Chebyshev

synthesized current ditribution giving a -30 dB design side

lobe level and A/2 element spacing. The center operating

frequency is 18 GHz. For the errors, we will assume the

radiating elements are tolerably matched to the feed struc

ture such that the RMS amplitude and phase errors are 0.1

and 5° , respectively. we will assume the array is manufac-

tured with a 0.05 centimeter RMS error in the (x,y,z) place-

ment of the individual radiating elements. Finally, for the

mission being considered, we can expect no more than 10

elements will fail. The resulting total error pattern

overlaid with the design pattern is shown in Figure 56. Now

let us remove the errors one-at-a-time until we get the

design radiation pattern back. With the phase error set to

zero, the resulting pattern is shown in Figure 57. Compar-

ing Figures 56 and 57 we see very little change in the

expected pattern. The expected pattern with both the ampli-

tude and phase errors set to zero and all other errors

remaining is shown in Figure 58. Again, there is very
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little change in the expected pattern. The expected pattern

with the fraction of elements set to one and the amplitude

and phase errors set to zero and just the translational

errors remaining is shown in Figure 59. We can see a signi-

ficant change in the expected patterns between Figures 58

and 59. Setting the translational errors to zero so that

all errors are zero or one in the case of the fraction of

elements operating, we obtain the design pattern as shown in

Figure 60. Though not conclusive, we can infer that the

translational errors, as small as they were, caused the

largest degradation in the pattern as evidenced by comparing

the transition of the expected pattern from Figure 58 to 59

and then from Figure 59 to 60. Of secondary importance is

the fraction of elements operating followed by the amplitude

error.

Summary

In this chapter the program PARRAY.EXE was validated to

ensure each routine functioned properly. The routines for

generating the element weights were validated against ex-

amples found in the literature. The pattern factor routines

were validated by using the element weights and other speci-

fic array parameters to produce data points whereby patterns

could be plotted and compared to patterns in the literature

or by knowing how the pattern should appear. The program

was used to produce Dolph-Chebyshev and Taylor synthesized

current distributions and patterns, uniform and binomial
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Figure 56. Expected and design radiation patterns (xz-plane)
for a lOxlO element, Doiph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level (all errors
present)
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Figure 57. Expected and design radiation patterns (xz-plane)
for a l0xlO element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level (phase error
set to 0)
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Figure 58. Expected and design radiation patterns (xz-plane)
for a lOx10 element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level (phase and
amplitude errors set to 0)
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Figure 59. Expected and design radiation patterns (xz-plane)
for a 10xlO element, Dolph-Chebyshev synthesized array with
A/2 spacing and a -30 dB design side lobe level (amplitude and
phase errors set to 0; P = 1)
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Figure 60. The expected (no-error) and design radiation
patterns (xz-plane) for a 1OxlO element, Dolph-Chebyshev
synthesized rr:y with \/2 spacing and a -30 dB design side
lobe level

current distributions and patterns, and the user-defined

routine was used to produce triangular and inverse-trian-

gular current distributions and patterns.

Next, the beamwidth and directivity calculation rou-

tines were validated against examples in the literature for

linear and planar arrays. The beamwidth routines performed

properly as did the directivity routines, however, it was

shown that the directivity routines may not be as accurate

when long dipoles (in terms of wavelength) are considered as

elements in the array or when the array is scanned past 40*

from broadside for dipoles much longer than one-half wave-

length. These problems arise because of the restrictions

placed on the directivity expression used in the program.
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An alternate method of quickly computing the directivity was

given in equation '5.1). The directivity calculated by

(5.1) can be compared to the directivity calculated by the

program to establish a bound on the true directivity.

Finally, the error routines were validated by comparing

patterns plotted from data calculated by the error routines

to five trends noted in the literature. Also, the error

routines were run for a no-error case to show that the

beamwidths matched those of the design beamwidths and that

there was no change in directivity due to errors. This

ensures the integrity of the program in determining the

difterences between the design array and the expected arrays.

The specific case used to validate the error routines was not

the only one used for this purpose. Several cases were run,

but, only this one was presented as being representative of

all the cases that were run, in confirming the error rou-

tines.
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VI. Conclusions and Recommendations

A program was developed to analyze the effects of

perturbations in an array's design parameters on the overall

performance of the array. An expression relating these

perturbations to the planar array's radiation pattern was

derived and used in developing the tolerance analysis rou-

tines used in the program. Tolerances considered by the

program include amplitude and phase errors in the element's

drive current, errors in the element positions within the

array, and errors between an element's actual pattern and

the average element pattern, as well as the fraction of

elements operating. The program user can input an array's

design parameters and tolerances and assess the impact of

the tolerances on the array's side lobe level, beamwidth,

and directivity for a specified bandwidth and scan angle.

Several trends were evident as confirmed by the pro-

gram. Firqt tbh rise in side lobe level due to random

errors, for a given set of tolerances and number of le

ments, increases (relative to the design side lobe level) as

further design side lobe level suppression is attempted.

Second, for a given set of tolerances, pattern deterioration

was found to decrease as the array was enlarged. Third, for

a given set of tolerances, pattern deterioration is less for

a planar array of size L2 than it is for a linear array of

length L. Fourth, the side lobe level increase due to

random errors does not depend on scan angle or is, at most,
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weakly dependent on scan angle. Finally, translational

errors in the positions of the elements were found, qualita-

tively, to cause the dominant effect in pattern deteriora-

tion provided the fraction of elements operating is high.

The array antenna engineer or program manager now has a

useful tool for assessing the effects of tolerances, at

least to a first order, on the performance of an array. Two

avenues are now evident for the user in designing an array

in the presence of errors. The user can specify the toler-

ances in a specification or the user can over-design the

array by designing for an M dB side lobe level when an N dB

side lobe level is desired. The user can use this program

to determine the amount of over-design needed to produce the

desired side lobe level.

There are several logical steps that can be taken in

continuing the work presented in this paper. The element

weights in the program could be modified to be complex,

thereby, becoming more general. The user could then enter

weights in the form IIje jo and, therefore, the program could

consider a wider variety of array excitations and patterns.

However, along with this generalization, a more general

means of calculating the directivitv would have to be devel-

oped and used in the program. A routine could be added for

investigations of deliberate element omission, where the

variable P becomes a function of position. Additional

element types could be added to the program making it more
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comprehensive, provided a new, general means of calculating

the directivity is developed, as mentioned earlier. Desig-

nated errors could also be made completely random in the

program by using a random number generator to create errors

within a certain standard deviation bound. That is, for a

specified root-mean-square error, 68% of the error values

would be within one standard deviation of the mean, 95%

within two standard deviations of the mean, and 99% within

three standard deviations of the mean while conforming to

the magnitude restrictions set forth in Chapter I. Finally,

a sensitivity analysis could be performed and a nomograph

made giving the antenna designer a priority of which errors

to reduce first, and to what level, before reducing other

errors.

Two additional routines could be added to the program.

One routine would calculate the probability of a side lobe

level exceeding the design side lobe 1:vel in different

regions of the pattern. This would be of particular inter-

est since most antenna designers are interested in this

quantity. A second beneficial routine would dete!iine the

change in pointing direction of the main beam due to errors.

These two routines, along with the other aforementioned

changes would greatly enhance the overall effectiveness of

this program.
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Appendix A: Development of the Finite
LenQth Dipole Element Factor

In this appendix, the element factors for a finite

length dipole oriented along the x-, y-, or z-axis are

developed (23:195-196).

Consider a dipole 'z
length L alji- - -

z-axis as

A.1. We uame a J

soidal c distri - .

along the
I(N

X sin k[(L/2)-Izl (A.1)

-for Izi (L/2). To find

the dipole radiation pattern

we must apply equation

IFigure A.I. Dipole antenna (2.27) substituting in our

along z-axis expression for the current

distribution. Equation (2.27) becomes:

Ue(8,O) = ImsinO[ fsin[k[(L/2)+z]]exp(jkz'coso)dzI

+ f sin (L/2)-zl) exp(jkzlcoso)dzl (A.2)

We can evaluate these integrals using:
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feaxsin(Bx+7)dx = [ea / ( a 2 + 2)1

X lasifl'fx+. .LBcos(Bx+y)] (A.3)

where for our problem; a = jkccG9 B = ±k, and 7 = kL/2.

After some mathematical mani,,.' ai:Ais we find:

U6 = (2Ik)

X[tcos[(kL/2)cosO]-cos(kL/2)]I/sinjl (A.4)

and from equation (2.26) we find:

Pr, (8,) = [nI!/(27rr)2]

X [[Cos (kL/2)cosO] - cos(kL/2) /sinj 2 (A.5)

The 6-variation of this function determines the far field

pattern. Thus, from equation (A.5), we will use:

U8,e('O) [CO (kL/2) cos6] -cos (kL/2 I] /simB (A.6)

as the element factor for a z-aligned dipole of length L.

Now let us suppose we have several dipoles positioned

parallel to each other along the z-axis, but, with currents

that are x-directed as shown in Figure A.2. We will let 7

be the spherical polar angle from the x-axis, such that,

0<,7<180". We can find the element factor from the expres-

sion:

U7(7) = sin-y J (x')exp(jkx'cos)dx' (A.7)
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which is analogous to equa-
x

tion (A.2). We note that:

COS7 = x (A.8) 7
so:

cosy = sin6coso (A.9)

and:
sin7 7

(l-sin' a cos2 0) Y (A.1i0)

Solving the integral in

equation (A.7), we find the y

element pattern for the di- Figure A.2. A linear array of
x-directed dipoles

pole of length L to be:

UYe(-Y) = [COS[1(kL/2)cos I - cos(kL/2)]I/sin7 (A.11)

In order to find the element factor in terms of 6 and 0, we

substitute in equations (A.9) and (A.10) for cos7 and siny

and equation (A.11), for an x-directed dipole, becomes:

U ,e(,) = [Cos[(kL/2)sinOcos-] - cos(kL/2)]

X (1 - sin26cosP-) (A.12)

Now let us assume we have several dipoles lying along

the z-axis, but, with y-directed currents. Following a

similar procedure to that of the x-directed dipoles with:

cos7 = y • r = sinocoso (A.13)

and

siny = (1 - sin' Ocos2' )W (A.14)
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we f ind:

UO.= [Cs(L2)ioio - cos (kL/ 2)]

X (1 - sin2esir12(p)- (A. 15)

Equation (A.15) is the element factor for a y-directed

dipole of length L.
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Appendix B: Program Listings

This appendix lists the names of the main program and

subprograms comprising the program PARRAY.EXE. The actual

code is contained in Volume II and may be requested by

writing:

AFIT/ENG
Wright Patterson Air Force Base, OH 45433
Attn: Major H. H. Barksdale

or:

ASD/RWZI
Wright Patterson Air Force Base, OH 45433
Attn: Major D. J. Haskell

and specifying the "Planar Array Antenna Design Analysis

Code."

Program Name Program Name

PARRAY.FOR AVERP.FOR
BINOML.FOR CHEBY.FOR
CI.FOR DBWDTH.FOR
DESDIR.FOR DESRP.FOR
DIPu2. FOR EBWDTH.FOR

ELDATA.FOR ELEFEA.FOR
ELFAC.FOR ERDATA.FOR
ERGFAL.FOR ERPFEA.FOR
EXPDIR.FOR EXPRPF.FOR
FACTRL.FOR OUTPUT.FOR

PARFAC.FOR PARFEA.FOR
REGFAL. FOR ROMBER.FOR
SI.FOR TAYLOR.FOR
UNIFRM.FOR USRDEF.FOR
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Appendix C: Planar Array DesiQn Analysis
ProQram User's Guide

This appendix contains instructions on huw to use the

Planar Array Design Analysis Program. Specific design

parameters required by the program are listed in preparation

for running the program. Then, step-by-step instructions

are provided to guide you through the program. It is as-

sumed that you have read Chapter 4, so that you have a basic

understanding of how the program operates.

Before running the program you will need to know the

following data:

(1) The center operating frequency or wavelength.

(2) The operating bandwidth as a percentage of the

frequency (upper minus lower) divided by the center frequen-

cy of the bandwidth multiplied by 100. The program will

also let you enter a bandwidth in terms of wavelengths. You

must realize that a wavelength specified bandwidth is not

the same as a frequency bandwidth. Also, the upper wave-

length gives the lower frequency and the lower wavelength

gives the upper frequency because of the inverse relation-

ship between frequency and wavelength.

(3) Number of elements in the x-direction and thcir

spacing in centimeters.

(4) The type of current distribution or synthesis in

the x-direction. If you are using a Dolph-Chebyshev syn-

thesis and you want the program to calculate the weights,
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you'll need to know the design side lobe level. If you are

using a discretized Taylor distribution and you want the

program to calculate the weights, you will need to know the

parameter fi and the side lobe level.

(5) Number of elements in the y-direction and their

spacing in centimeters.

(6) The type of current distribution or synthesis in

the y-direction. The same comments apply here as they did

for the x-direction.

(7) The type of element you want to use in the array.

In the program, you may choose between a dipole oriented in

the x-, y-, or z-direction or an isotropic element. If you

choose a dipole, you'll need to know its length in centi-

meters.

(8) The tolerances for your expected array.

.LA..Luft1CLiodL -an probably be found in a design cpecification

or obtained directly from the design authority. You will

need to know the Root Mean Square (RMS) errors in the ampli-

tude and phase drive current at the elements, the RMS trans-

lational errors in the x, y, and z placement of the ele-

ments, the RMS error between the average element pattern and

the actual element pattern in the array, and the fraction of

elements expected to be operating during a given mission.

If you don't have every tolerance item readily available,

you can simply set that tolerance to zero in the program,

except the RMS element pattern error which should be set to
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a value of -100 dB. The program is looking for the element

pattern error in decibels.

(9) Pointing angles where you want to calculate the

beamwidths and directivities.

A Word of Caution: All data entered to the program, is

entered as either an "integer" or a "real" number. For the

purpose of this program, an integer is defined as a number

that does not have a decimal point. Conversely, a real

number is defined as a number that does have a decimal

point. If you enter a real number where an integer is asked

for, a DOS run error will occur and the program terminates.

If you enter an integer for a real number, then you will not

end up with the number you entered. For example, if you

enter a "1" for a real number response, you will end up with

a value like 0.000001. In the program, this situation is

correctable since you will be able to verify the data you

just entered. One last item, when you verify a response,

the program will ask you;

"Is this correct? [l]Yes [2]No"

Respond with the i "1" or "2". All other questions

asked by the program will specify whether an integer or a

real number is wanted.

Now that you have all the information you need to run

the program you may begin by typing "PARRAY" followed by a

[RETURN]. You should get a brief introduction statement.

Now follow these steps to proceed through the program.
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STEP ACTION REQUESTED

1 The program is asking you if you want to enter the
center operating frequency or wavelength. Enter a
"I" for frequency or a "2" for wavelength. Notice
the numbers for each are integers. If you choose
frequency the bandwidth will be in frequency. If
you choose wavelength the bandwidth will be in
wavelengths.

2 No matter if you choose frequency of wavelength,
you will now enter the center operating frequency
in hertz or the wavelength in centimeters. Type
your value followed by a (RETURN].

3 Now the program is asking you to verify your
input. Respond appropriately. If you respond
with a "2" for "No" the program backs up to the
last step to get your new value. Otherwise the
program continues.

4 The program wants to know the bandwidth. If you
are working in wavelengths simply use:

(upper wavelength- lower wavelength) X 100

center wavelength

to calculate the bandwidth as a percentage. Enter
the bandwidth as a percentage.

5 Now the program asks you to verify the upper and
loser frequencies or wavelengths it has calculated
based on your bandwidth specification. Enter the
appropriate response. If you enter a "i" the
program continues. Yf you enter a "2" the program
will ask you for a new bandwidth.

6 The program asks for the number of elements in the
x-direction. You may enter any value from 1 to
500. If you enter a large number, be prepared to
spend some time waiting for the program to calcu-
late patterns, beamwidths, and directivities. The
program was written to be efficient, however,
there are some things in array theory that take
time to calculate especially for large arrays. If
you enter a "1" at this point, the program automa-
tically skips to the uniform current distribution
routine. Enter the number of elements in the x-
direction. Note, the program is asking for an
integer.
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Step Action Recuested

7 Verify the number of elements in the x-direction.
If you have only one element in the x-direction,
go to step 22.

8 Enter the distance between elements in the x-
direction in centimeters.

9 Verify the spacing. If you have two elements in
the x-direction go to step 22 as all element
weights are set to unity by the uniform current
distribution routine.

10 Now you need to decide what type of current dis-
tribution or synthesis procedure you want to use
in the x-direction. The binomial and uniform
current distributions are automatically calcu-
lated. If you choose Dolph-Chebyshev synthesis
then you will need to know the design side lobe
level. If you choose the Taylor n-parameter
synthesis you'll need to know the fi parameter and
the design side lobe level. If you choose the
user defined current distribution you'll need to
know the currents for each element in the x-direc-
tion. Make your selection.

11 Verify your selection. If you chose Dolph-Cheby-
shev synthesis go to step 12. If you chose Taylor
fn-parameter synthesis go co step 14. Ir you chose
user defined current distribution go to step 20.
If you chose uniform or binomial current distribu-
tions go to step 22.

12 Enter the desired side lobe level in decibels.
Note that the program is asking for a positive
value and it will not let you proceed until it
gets a positive quantity. For example, if you
know that the design side lobe level is -25 dB
then enter 25.

13 Verify your side lobe level. After you verify
your response, you will see the element weights
scroll across your screen. Go to step 22.

14 Now you see the guidelines for selecting the n-
parameter. You also see the range of the fi-param-
eter the program has calculated based on the array
specifications and the center operating frequency
or wavelength. Choose the appropriate value of h
for the design side lobe level. There may be a
conflict arise at this point The array may not
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Step Action Requested

be able to support the specific side lobe level
you want based on the specifications you entered.
For example, if you want a -40 dB side lobe
level, but, the largest value of fn you're able to
enter is 5, you have a problem. fi must be at
least 6 for a -40 dB side lobe level. If this
conflict does arise, you may need to investigate
the details of the design with the design author-
ity. Enter the value of fi you need.

15 Verify your value of h.

16 Enter the desired side lobe level in decibels.
Note that the program is asking for a positive
value and it will not proceed until it gets a
positive value. For example, if you know that the
design side lobe level is -25 dB, then enter 25.

17 Verify your side lobe level.

18 Now you must decide on whether to use the aperture
sampling or null matching weights. Some guide-
lines are given for selecting the appropriate
weights for your application. Make your choice.

19 Verify your choice. These are the element weights
the program will use for the x-direction. Go to
step 22.

20 Ente. the weight of the first element in the x-
direction. The first element is the one at the
origin in Figure 13, Chapter 3. The second ele-
ment is the next element in the positive x-direc-
tion, and so on.

21 Verify your element weight. Steps 20 and 21 are
repeated as many times as the number of elements
in the x-direction. As soon as you enter the
weight for the last element go to step 22.

22 Repeat steps 6 through 21, as required, for the y-
direction. The procedure is exactly the same.
When you are finished with the y-directicn con-
tinue with step 23.

23 Now you need to decide what type of element you
want to use in your array. If you choose a dipole
you will need to know its ler.gth.
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Step Action Requested

24 Verify your element selection. If you choose an
isotropic element go to step 27.

25 Enter the length of your dipole in centimeters.

26 Verify's your dipole's length.

27 Now the program wants to know the errors in the
expected array. The first error it wants is the
RMS amplitude error. Enter this error as a frac-
tion of the total amplitude. Enter the RMS ampli-
tude term.

28 Verify your response.

29 Enter the RMS phase error in "egrees.

30 Verify your response.

31 Enter the standard deviation (RMS error) in centi-
meters in the x-translational error of a typical
element in the array.

32 Verify your response.

33 Enter the standard deviation (RMS error) in centi-
meters of the y-translational error of a typical
element in the array.

34 Verify your response.

35 Enter the standard deviation (RMS error) in centi-
meters of the z-translational error of a typical
element in the array.

36 Verify your response.

37 Enter the RMS error between the average element
pattern and the actual element pattern in the
array environment in decibels. If data is not
available for this error then enter -100 (dB)
since this will essentially set this term to zero
in the program.

38 Verify your response.

39 Enter the fraction of elements operating. The
program wants a number between zero and one.
Also, be reasonable with your response. If you
have, for example, a 25 element array, it doesn't
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Step Action Recquested

make sense to specify 0.98 as the fraction of
elements operating since this would mean that 24
elements are operating.

40 Verify your response.

41 Decide now if you want the program to calculate
the data points for the design and expected radia-
tion patterns in the xz- and yz-planes at the
center wavelength or frequency. Four sets of data
are generated in this run.

42 Verify your response. If the data points for
these pattern plots are not wanted, then proceed
to step 49.

43 The program lets you specify a scan angle in the 9
direction (as defined in Figure 13, Chapter 3)
along the positive x-axis (0=0°). If you want a
broadside pattern, simple enter 0.0(°). The scan
angle you enter will be for the design array in
the xz-plane. Enter your scan angle.

44 Verify your response. The program begins calcu-
lating the data points.

45 Now enter the scan angle in the 6 direction for
the design array in the yz-plane. This time the 6
direction will be along the positive y-axis
(0=90'). Enter your scan angle.

46 Verify your response. The program beqins calcu-
lating the data poinzs.

47 This time, enter the scan angle in the 6 direction
for the expected array in the xz-plane. Again the
6 direction will be along the positive x-axis
(0=00). Enter your scan angle.

48 Verify your response. The program begins calcu-
lating the data points.

49 Decide now if you want the program to calculate
the data points for the design and expected radia-
tion patterns in the xz-and yz-planes at the lower
wavelength or upper frequency. Four sets of data
are generated in this run.
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Step Action Reauested

50 Verify your response. If the data points for this
pattern plot are not wanted, then proceed to step
57.

51 The program lets you specify a scan angle in the 9
direction (as defined in Figure 13, Chapter 3)
along the positive x-axis (0=0°). If you want a
broadside pattern, simple enter 0.0(°). The scan
angle you enter will be for the design array in
the xz-plane. Enter your scan angle.

52 Verify your response. The program begins calcu-
lating the data points.

53 Now enter the scan angle in the 9 direction for
the design array in the yz-plane. This time the 6
direction will be along the positive y-axis
(0=90°). Enter your scan angle.

54 Verify your response. The program begins calcu-
lating the data points.

55 This time, enter the scan angle in the 9 direction
for the expected array in the xz-plane. Again the
0 direction will be along the positive x-axis
(0=0"). Enter your scan angle.

56 Verify your response. The program begins calcu-
lating the data points.

57 Decide now if you want the program to calculate
the data points for the design and expected radia-
tion patterns in the xz-and yz-planes at the upper
wavelength or lower frequency.

58 Verify your response. If the data points for this
pattern plot are not wanted, then proceed to step
65.

59 The program lets you specify a scai angle in the 9
direction (as defined in Figu.re 13, Chapter 3)
along the positive x-axis (0=0°). If you want a
broadmide pattern, simple enter 0.0(°). Tfe scan
angle you enter will be for the design array in
the xz-plane. Enter your scan angle.

60 Verify your response. The program begins calcu-
lating the data points.
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Sten Action ReQuested

61 Now enter the scan angle in the * direction for
the design array in the yz-plane. This time tne o
direction will be along the positive y-axis
(p=90"). Enter your scan angle.

62 Verify your response. The program begins calcu-
lating tha &ata pcirts.

63 This time, enter the scan angle in the 0 direction
for the expected array in the xz-plane. Again the
8 direction will be along the positive x-axis
(0=00). Enter your scan angle.

64 Verify your response. The program begins calcu-
lating the data points.

[NOTE: If you had data points calculated for pattern
plots refer to pages 68-69, Chapter 4, for the
names of the files generated by the program for a
particular pattern.]

65 For the calculations that follow from this point
on, the program needs to know the scan angles in
the a and 0 directions as defined in Figure 13.
You will be able to vary these angle later in the
program. Enter the scan angle in the 6 direction.

66 Verify your response.

67 Enter the scan angle in the phi direction.

68 Verify your response. Now sit back for a few
minutes and watch the program calculate the beam-
widths and directivities at the center and both
extremes of your specified bandwidth for the
design and expected arrays.

69 Your data was just sent to an output file. Now
you have the option of varying the scan angles, in
which case the program returns to step 65, or
terminating your run. All the data compiled up to
this point was sent to the file "OUTPUT.DAT". If
you select new scan angles, the program will not
over-write your earlier data with the new data.
It simply extends the length of the output file
with the new scan angles and data. Make your
selection.

70 Verify your response. If you chose to recalculate
for new scan angles go to step 65. Otherwise you
are finished. [Please read next page.]
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[NOTE: Your data is contained in a file called
"OUTPUT.DAT". This is an ASCII text file and you
should be able to read this file in to any word
processor for viewing. You will notice a numeri-
cal error data for the beamwidth calculations
section at the end of each run for a given scan
angle. Each item listed in this section is de-
fined on pages 81 through 83, Chapter 4.]
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The purpose of this study wao to develop a computer
program that can assess the impact of small design perturba-
tions on the performance of a planar array antenna of di-
poles. The antenna designer can compare an array's theore-
tical performance standards with those of the pertrubed
array.

In the course of this study, an expression for the
expected, or average, radiation pattern for the perturbed
planar array was developed and used in the program. Trans-
lational errors in the positions of the elements, errors in
the element's drive amplitude ard phase, non-identical
element patterns, and missing elements were accounted for in
the expected radiation pattern.

The designer specifies the array design parameters and
the tolerance data, then the program calculates the radia-
tion pattern data, half-power beamwidths, and directivities
for specified scan angles and frequency bandwidth for the
design and perturbed arrays. The radiation pattern data can
be plotted allowing side lobe comparison between the ex-
pected and design arrays.

This study confirmed five trends noted in earlier stu-
dies: (1) The rise in side lobe level due to random errors,
for a given set of tolerances and number of elements, in-
creased as the side lobe level was further suppressed. (2)
For a given set of tolerances, pattern deterioration was
found to decrease as the array was enlarged. (3) For a
given set of tolerances, pattern deterioration was less for
a planar array of size L-squared than it was for a linear
array of length L. (4) The side lobe level increase due to
random errors did not depend on the scan angle. (5) Al-
though not shown conclusively, but, qualitatively, transla-
tional errors were found to cause the dominant effect pro-
vided element reliability was high.

The antenna designer can use the program to assess the
effects of certain tolerances in designing the array. The
program can be used as a tool for establishing a bound on
the tolerances to achieve a certain side lobe level. Or,
given the tolerances, the designer can adjusL the size of
the array until the desired side lobe level is achieved.


